
Fermilab 

Computing Division
Fermi National Accelerator Laboratory

GU0014B

Complete Guide and Reference Manual for 
UPS, UPD and UPP v4

Part II: Product Installer’s Guide
Part III: System Administrator’s Guide

Part V: Distribution Node Maintainer’s Guide and
Part VII: Administrator’s Reference

Release 2.0
June 30, 2000

Compiled by Anne Heavey

ABSTRACT

This manual documents the standard methodology for UNIX product support at Fermilab, which 
is implemented via the utilities UPS (UNIX Product Support), UPD (UNIX Product Distribution), 
and UPP (UNIX Product Poll). These utilities were significantly redesigned for version v4, which 
was initially released in 1998, and have continued to be revised since then. The latest release as of 
this writing is v4_5_2. This document supersedes GU0014 “UPS and UPD v4 Reference Man-
ual”, released June 5, 1998.

This part of the document (GU0014B) includes separate user’s guides for product installers, UPS/
UPD and system administrators, and maintainers of product distribution nodes. It also includes a 
reference guide for administrative users.



Revision Record

This document and associated documents and programs, and the material and data contained therein, were developed 
under the sponsorship of an agency of the United States government, under D.O.E. Contract Number EY-76-C-02-
3000 or revision thereof. Neither the United States Government nor the Universities Research Association, Inc. nor 
Fermilab, nor any of their employees, nor their respective contractors, subcontractors, or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for accuracy, completeness or usefulness 
of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-
owned rights. Mention of any specific commercial product, process, or service by trade name, trademark, 
manufacturer, supplier, or otherwise, shall not, nor is it intended to, imply fitness for any particular use, or constitute 
or imply endorsement, recommendation, approval or disapproval by the United States Government or URA or 
Fermilab. A royalty-free, non-exclusive right to use and disseminate same for any purpose whatsoever is expressly 
reserved to the U.S. and the U.R.A. Any further distribution of this software or documentation, parts thereof, or other 
software or documentation based substantially on this software or parts thereof will acknowledge its source as 
Fermilab, and include verbatim the entire contents of this Disclaimer, including this sentence.

May 1997 Original Release 1.0 (for UPS v3 and UPD v2)

August 1997 Revisions 1.1 and 1.1a (for UPS v3 and UPD v2)

June 1998 Release 1.0 for UPS and UPD v4

December 1999 Draft release 2.0 for UPS/UPD/UPP v4. Part VI Command Reference only

June 2000 Release 2.0 for UPS, UPD and UPP v4 (current as of v4_5_2)



Acknowledgments 

The redesign and redevelopment of UPS and its companion products in preparation for Fermilab’s 
Run II involved a substantial commitment of resources from the Computing Division in 1997-98.  
Special thanks to Don Petravick (HPPC), Ruth Pordes (OLS), and Dane Skow (OSS) for providing 
talented and motivated members of their groups to accomplish this task.  Since the initial release of 
UPS/UPD v4 in 1998, development has been continuing, and we are at version v4_5_2 as of this 
writing.

The redevelopment effort was led by Eileen Berman.  With her, the principal designers and 
developers of UPS/UPD v4 included David Fagan, Marc Mengel, Lars Rasmussen and Margaret 
Votava.  Other contributors to the new design included Lauri Loebel Carpenter, Rob Harris, Alan 
Jonckheere, Art Kreymer, Liz Sexton-Kennedy.  Other contributors to the coding effort included 
Chuck Debaun, Paul Russo and Don Walsh.

Contributors in the areas of code review, testing, documentation review and deployment included 
Lauri Loebel Carpenter, Chuck Debaun, Lisa Giacchetti, Alan Jonckheere, Art Kreymer, Liz 
Sexton-Kennedy, Mike Stolz, Don Walsh and Gordon Watts, in addition to the development team.  
Special thanks go to Marc Mengel and Margaret Votava for contributing all the updated UPD and 
UPP information included in the first release of this manual for UPS/UPD v4.

Wayne Baisley and Marc Mengel are currently responsible for on-going support and development 
of UPS/UPD, and thanks go to them for providing quite a bit of updated information for this 
release of the manual. Thanks are also due to Wayne and Marc as well as to Joy Hathaway, Lauri 
Loebel Carpenter and Cindy Wike for reviewing portions of the documentation and providing 
feedback.



 



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-1

Table of Contents for Parts II, III, V, and VII

About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT-1
Document Structure, Purpose and Intended Audiences. . . . . . . . . . . . . . . INT-1
Availability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT-3
Updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT-3
Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT-3
Your Comments are Welcome! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT-5

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLO-1

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDX-1

Part II:  Product Installer’s Guide

Chapter 3:  General Product Installation Information  . . . . . . . . . . . . . . . . 3-1
3.1  Installation Methods for UPS Products  . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1.1  UPD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1.2  UPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.1.3  FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

3.2  User Node Registration for KITS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.3  What You Need to Know about Your System’s UPD Configuration  . . 3-3

3.3.1  Location of UPD Configuration File  . . . . . . . . . . . . . . . . . . . . . . . 3-3
3.3.2  Where Products Get Declared  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.3.3  Where Products Get Installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

3.4  Declaring an Instance Manually  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3.4.1  The ups declare Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
3.4.2  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

3.5  Installation FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.5.1  What File Permissions Get Set? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.5.2  You’re Ready to Install: Should you Declare Qualifiers?  . . . . . . . 3-8
3.5.3  What if an Install Gets Interrupted? . . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.5.4  What if a Product was Installed under a Different Name? . . . . . . . 3-8

3.6  Post-Installation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.6.1  Configuring a Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.6.2  Tailoring a Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9



TOC-2 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

3.7  Networking Restrictions at your Site . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.7.1  Proxying Webserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
3.7.2  Firewall for Incoming TCP Connections . . . . . . . . . . . . . . . . . . . 3-10

Chapter 4:  Finding Information about Products on a Distribution Node . 4-1
4.1  Listing Products on a Distribution Node  . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.1.1  Using UPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.2  Using UPP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.2  Listing Product Dependencies on a Distribution Node  . . . . . . . . . . . . . 4-5
4.3  Information about Products in KITS  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.3.1  Access Restrictions and Product Categories  . . . . . . . . . . . . . . . . . 4-6
4.3.2  Product Pathnames for FTP Access . . . . . . . . . . . . . . . . . . . . . . . . 4-7

4.4  Special Instructions for Proprietary Products  . . . . . . . . . . . . . . . . . . . . 4-8

Chapter 5:  Installing Products Using UPD  . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1  The upd install Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.1.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.2  Passing Options to the Local ups declare Command . . . . . . . . . . . 5-2

5.2  How UPD Selects the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.2.1  Database Selection Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.2.2  Database Selection for Dependencies  . . . . . . . . . . . . . . . . . . . . . . 5-3
5.2.3  Selecting a Database for Development or Testing . . . . . . . . . . . . . 5-3

5.3  Checklist for Installing a Product using UPD  . . . . . . . . . . . . . . . . . . . . 5-3
5.4  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

5.4.1  Install a Product Using Default Database  . . . . . . . . . . . . . . . . . . . 5-4
5.4.2  Install a Product, Specifying Database . . . . . . . . . . . . . . . . . . . . . . 5-5
5.4.3  Install a Product and All Dependencies . . . . . . . . . . . . . . . . . . . . . 5-5
5.4.4  Install a Product and No Dependencies  . . . . . . . . . . . . . . . . . . . . . 5-7
5.4.5  Install a Product and Required Dependencies Only . . . . . . . . . . . . 5-7

Chapter 6:  Installing Products Using UPP . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.1  Overview of Using UPP to Install Products . . . . . . . . . . . . . . . . . . . . . . 6-1
6.2  Creating a UPP Subscription File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.2.1  Create the Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.2.2  Identify the Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.2.3  Trigger the Product Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.2.4  Provide Instructions to UPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

6.3  Sample Subscription File for Installing a Product . . . . . . . . . . . . . . . . . 6-3
6.4  The UPP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.5  Automating UPP via cron  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

Chapter 7:  Installing Products using FTP  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.1  UPS Product Components to Download  . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.2  Installing Products from fnkits.fnal.gov  . . . . . . . . . . . . . . . . . . . . . . . . 7-2

7.2.1  Download the Files from fnkits  . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
7.2.2  Unwind the Files into your Products Area . . . . . . . . . . . . . . . . . . . 7-3
7.2.3  Declare the Product to your Database  . . . . . . . . . . . . . . . . . . . . . . 7-4

7.3  Installing Products from Other Product Distribution Nodes  . . . . . . . . . 7-4



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-3

7.3.1  Locate the Product Files on the Server . . . . . . . . . . . . . . . . . . . . . . 7-4
7.3.2  Download the Files from the Server  . . . . . . . . . . . . . . . . . . . . . . . 7-5
7.3.3  Unwind the Files into your Products Area . . . . . . . . . . . . . . . . . . . 7-5
7.3.4  Declare the Product to your Database  . . . . . . . . . . . . . . . . . . . . . . 7-5

Chapter 8:  Product Installation: Special Cases . . . . . . . . . . . . . . . . . . . . . . 8-1
8.1  Installing Products that Require Special Privileges . . . . . . . . . . . . . . . . 8-1
8.2  Installing Locally Using UPD from AFS-Space  . . . . . . . . . . . . . . . . . . 8-2
8.3  Installing Products into AFS Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

8.3.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
8.3.2  Request a Product Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
8.3.3  Install your Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
8.3.4  Post-Installation Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

Chapter 9:  Troubleshooting UPS Product Installations  . . . . . . . . . . . . . . . 9-1

Part III:  System Administrator’s Guide

Chapter 10:  Maintaining a UPS Database . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10.1  Declare an Instance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

10.1.1  The ups declare Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
10.1.2  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

10.2  Declare a Chain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
10.2.1  The ups declare Command with Chain Specification  . . . . . . . . 10-4
10.2.2  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

10.3  Remove a Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6
10.4  Change a Chain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
10.5  Undeclare and Remove an Instance . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7

10.5.1  Using ups undeclare to Remove a Product . . . . . . . . . . . . . . . . . 10-8
10.5.2  Undoing Configuration Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9
10.5.3  Using UPP to Remove a Product . . . . . . . . . . . . . . . . . . . . . . . 10-10

10.6  Verify Integrity of an Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
10.7  Modify Information in a Database File  . . . . . . . . . . . . . . . . . . . . . . 10-11
10.8  Determine If a Product Needs to be Updated  . . . . . . . . . . . . . . . . . 10-13

10.8.1  Using UPP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13
10.8.2  Using UPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13

10.9  Update a Table File or ups Directory . . . . . . . . . . . . . . . . . . . . . . . . 10-14
10.10  Retrieve an Individual File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15
10.11  Check Product Accessibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16
10.12  Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17



TOC-4 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

Chapter 11:  UPS and UPD Pre-install Issues and General Administration 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
11.1  Choosing Installer Accounts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

11.1.1  Single Installer Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
11.1.2  Multiple Installer Accounts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
11.1.3  Separate Installer Accounts for Different Product Categories . . 11-2

11.2  Setting gids for Multiple Installer Accounts  . . . . . . . . . . . . . . . . . . . 11-2
11.3  File Ownership, Permissions and Access Restrictions  . . . . . . . . . . . 11-3

11.3.1  Product Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
11.3.2  Database Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

11.4  Product File Location and Organization  . . . . . . . . . . . . . . . . . . . . . . 11-4
11.4.1  Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
11.4.2  Single Flavor or Single Node Systems . . . . . . . . . . . . . . . . . . . . 11-4
11.4.3  Multi-Flavor and/or Multi-Node Systems  . . . . . . . . . . . . . . . . . 11-5

11.5  Database File Location and Organization  . . . . . . . . . . . . . . . . . . . . . 11-6
11.5.1  Choosing Single or Multiple UPS Databases . . . . . . . . . . . . . . . 11-6
11.5.2  UPS Database File Pointers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6

11.6  Installing UPS for Use Without a Database . . . . . . . . . . . . . . . . . . . . 11-7
11.7  CYGWIN (Windows NT) Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7

11.7.1  Using Correct Perl Version  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7
11.7.2  Mounting the CYGWIN bin Directory  . . . . . . . . . . . . . . . . . . . 11-8
11.7.3  Setting Environment Variables  . . . . . . . . . . . . . . . . . . . . . . . . . 11-8

11.8  General Administration Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
11.8.1  Upgrading an Older System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
11.8.2  Adding a New Database and/or Products Area  . . . . . . . . . . . . . 11-9
11.8.3  Collecting Statistics on Product Usage  . . . . . . . . . . . . . . . . . . 11-10

Chapter 12:  Providing Access to AFS Products . . . . . . . . . . . . . . . . . . . . . 12-1
12.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
12.2  Configuring a Local Database to Work With AFS  . . . . . . . . . . . . . . 12-2

12.2.1  Steps to Create and Configure the Database  . . . . . . . . . . . . . . . 12-2
12.2.2  Post-Configuration: Reinitialize FUE Environment  . . . . . . . . . 12-4
12.2.3  A Note about Product Installation for this Configuration  . . . . . 12-4

12.3  Installing a Local Copy of CoreFUE . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
12.4  Additional Steps for Unfamiliar Naming Conventions  . . . . . . . . . . . 12-5
12.5  Updating /usr/local/bin to Access AFS Products . . . . . . . . . . . . . . . . 12-6

Chapter 13:  Bootstrapping CoreFUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1
13.1  Downloading the Bootstrap and Configuration Files  . . . . . . . . . . . . 13-1

13.1.1  Predefined Configurations for UNIX . . . . . . . . . . . . . . . . . . . . . 13-1
13.1.2  User-defined Configuration for UNIX . . . . . . . . . . . . . . . . . . . . 13-2
13.1.3  Predefined Configurations for NT  . . . . . . . . . . . . . . . . . . . . . . . 13-2

13.2  Customizing a Bootstrap Configuration  . . . . . . . . . . . . . . . . . . . . . . 13-3
13.2.1  Bootstrap Configuration File Statement Definitions  . . . . . . . . . 13-3
13.2.2  Sample Customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-5

13.3  Running the Bootstrap Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
13.3.1  UNIX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
13.3.2  NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5

Chapter 14:  Automatic UPS Product Startup and Shutdown  . . . . . . . . . 14-1
14.1  Configuring Your Machine to Allow Automatic Startup/Shutdown . 14-1
14.2  Installing a UPS Product to Start and/or Stop Automatically  . . . . . . 14-2

14.2.1  Determine if Auto Start/Stop Feature is Enabled . . . . . . . . . . . . 14-2
14.2.2  Determine if Product is Appropriate for Autostart . . . . . . . . . . . 14-3
14.2.3  Edit Control File(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
14.2.4  Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4

14.3  Disabling UPS Automatic Start/Stop of Processes  . . . . . . . . . . . . . . 14-4
14.4  A Summary of the UPS Automatic Start-up Process . . . . . . . . . . . . . 14-5

Part V:  Distribution Node Maintainer’s Guide

Chapter 20:  Product Distribution Server Configuration  . . . . . . . . . . . . . 20-1
20.1  How A Server Responds to a UPD Client Command  . . . . . . . . . . . . 20-1

20.1.1  The Process for upd addproduct . . . . . . . . . . . . . . . . . . . . . . . . . 20-2
20.1.2  The Process for upd install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2

20.2  Accounts Required for Distribution Server . . . . . . . . . . . . . . . . . . . . 20-3
20.2.1  The updadmin Account  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3
20.2.2  The ftp Account  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3
20.2.3  The wwwadm Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-4

20.3  Web Server Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-5
20.3.1  The cgi Scripts Used to Access Distribution Database  . . . . . . . 20-5
20.3.2  Restricting Access to Distribution Database  . . . . . . . . . . . . . . . 20-6
20.3.3  Prerequisites for Modifying the Distribution Database  . . . . . . . 20-7
20.3.4  Permissions on Files Created in the Distribution Database . . . . 20-7

20.4  FTP Server Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-7
20.5  UPD Configuration Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-9

20.5.1  Archive File Keywords and ${SUFFIX} . . . . . . . . . . . . . . . . . . 20-9
20.5.2  Pre- and Postdeclare ACTIONs . . . . . . . . . . . . . . . . . . . . . . . . 20-10

20.6  Administrative Tasks and Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . 20-10
20.6.1  Reporting FTP and Web Server Activity Using Ftpweblog  . . 20-10
20.6.2  Restricting Access for Uploads to Distribution Database  . . . . 20-11
20.6.3  Restricting Access for Downloads from Distribution Database 20-11
20.6.4  Restricting Distribution of Particular Products  . . . . . . . . . . . . 20-11
20.6.5  Flagging Special Category Products Using Optionlist . . . . . . . 20-12
20.6.6  Searching FTP Server Logfiles Using Searchlog . . . . . . . . . . . 20-13

20.7  Product Distribution via CD-ROM  . . . . . . . . . . . . . . . . . . . . . . . . . 20-14

Chapter 21:  Configuration of the fnkits Product Distribution Node . . . . 21-1
21.1  UPS Configuration for KITS Database  . . . . . . . . . . . . . . . . . . . . . . . 21-1
21.2  UPS Configuration for local Product Database . . . . . . . . . . . . . . . . . 21-1



TOC-6 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

21.3  UPD Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2
21.3.1  updconfig File Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2
21.3.2  The Recognized Product Categories  . . . . . . . . . . . . . . . . . . . . . 21-3
21.3.3  Matching Product Categories to updconfig Stanzas  . . . . . . . . . 21-3
21.3.4  Location and File Name Definitions  . . . . . . . . . . . . . . . . . . . . . 21-4
21.3.5  Pre- and Postdeclare ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 21-4

21.4  fnkits Server Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-6
21.4.1  User Accounts and Group Ids  . . . . . . . . . . . . . . . . . . . . . . . . . . 21-6
21.4.2  Database and Configuration File Locations . . . . . . . . . . . . . . . . 21-6
21.4.3  Web Server and FTP Log File Information . . . . . . . . . . . . . . . . 21-7

Part VII:  Administrator’s Reference

Chapter 27:  Information Storage Format in Database and Configuration Files

 27-1
27.1  Overview of File Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-1
27.2  Keywords:  Information Storage Format . . . . . . . . . . . . . . . . . . . . . . 27-2

27.2.1  What is a Keyword? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-2
27.2.2  Keyword Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-2
27.2.3  User-Defined Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-2
27.2.4  How UPS/UPD Sets Keyword Values . . . . . . . . . . . . . . . . . . . . 27-3

27.3  Flexibility of File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-3
27.4  List of Supported Keywords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-3
27.5  Syntax for Assigning Keyword Values  . . . . . . . . . . . . . . . . . . . . . . . 27-8
27.6  Usage Notes on Particular Keywords  . . . . . . . . . . . . . . . . . . . . . . . . 27-9

27.6.1  COMPILE_DIR, COMPILE_FILE and @COMPILE_FILE  . . 27-9
27.6.2  PROD_DIR_PREFIX, PROD_DIR and @PROD_DIR  . . . . . . 27-9
27.6.3  STATISTICS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-9
27.6.4  TABLE_FILE and @TABLE_FILE  . . . . . . . . . . . . . . . . . . . . 27-10
27.6.5  UPS_DIR and @UPS_DIR  . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-11
27.6.6   _UPD_OVERLAY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-11

Chapter 28:  Version Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-1
28.1  About Version Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-1
28.2  Keywords used in Version Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-2
28.3  Version File Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-3

28.3.1  Sample Version File for exmh v1_6_6  . . . . . . . . . . . . . . . . . . . 28-3
28.3.2  Sample version file for foo v2_0  . . . . . . . . . . . . . . . . . . . . . . . . 28-4

28.4  Determination of ups Directory and Table File Locations  . . . . . . . . 28-5

Chapter 29:  Chain Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-1
29.1  About Chain Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-1
29.2  Keywords Used in Chain Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-2



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-7

29.3  Chain File Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-3
29.3.1  Sample chain file for exmh v1_6_6 . . . . . . . . . . . . . . . . . . . . . . 29-3
29.3.2  Sample chain file for foo v2_0 . . . . . . . . . . . . . . . . . . . . . . . . . . 29-3

Chapter 30:  The UPS Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . 30-1
30.1  dbconfig File Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-1
30.2  Keywords Used in dbconfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-1
30.3  Sample dbconfig File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-2

Chapter 31:  The UPD Configuration File  . . . . . . . . . . . . . . . . . . . . . . . . . 31-1
31.1  updconfig File Organization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-1
31.2  Product Instance Identification and Matching . . . . . . . . . . . . . . . . . . 31-2
31.3  Defining Locations for Product Files . . . . . . . . . . . . . . . . . . . . . . . . . 31-3

31.3.1  Required Locations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-3
31.3.2  Read-Only Variables Usable in Location Definitions  . . . . . . . . 31-4
31.3.3  Sample Location Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-5

31.4  Pre- and Postdeclare Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-5
31.4.1  ACTION Keyword Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-6
31.4.2  The execute Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-6

31.5  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31-7
31.5.1  Generic Template updconfig File . . . . . . . . . . . . . . . . . . . . . . . . 31-7
31.5.2  Distribution from the fnkits Node Only . . . . . . . . . . . . . . . . . . . 31-8
31.5.3  Customized Treatment of ups Directory and Table Files  . . . . . 31-8
31.5.4  Implementing Multiple Configurations  . . . . . . . . . . . . . . . . . . . 31-9
31.5.5  Sample Configuration for AFS Space Using ACTIONS . . . . . 31-10
31.5.6  Distribution Node Configuration . . . . . . . . . . . . . . . . . . . . . . . 31-10

Chapter 32:  The UPP Subscription File . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-1
32.1  UPP Subscription File Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-1
32.2  Stanzas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-2

32.2.1  Product Instance Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 32-2
32.2.2  Conditions and Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-2

32.3  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-3
32.3.1  Sample UPP Subscription File . . . . . . . . . . . . . . . . . . . . . . . . . . 32-3
32.3.2  A Longer Annotated Example  . . . . . . . . . . . . . . . . . . . . . . . . . . 32-4

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLO-1

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDX-1



TOC-8 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-9

Table of Contents for Complete Guide

About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT-1
(This introductory chapter is listed in the front section of the table of contents.)

Part I:  Overview and End User’s Guide

Chapter 1:  Overview of UPS, UPD and UPP v4  . . . . . . . . . . . . . . . . . . . . . 1-1
1.1  Introduction to UPS, UPD and UPP  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2  Motivation for the UPS Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.3  UPS Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

1.3.1  Versions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.3.2  Flavors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.3.3  Qualifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.3.4  Product Instances  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.3.5  Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.3.6  Product Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.3.7  Product Overlays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

1.4  UPS Database Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.4.1  UPS Database Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.4.2  UPS Database Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

1.5  Using UPS Without a Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
1.6  UPS and UPD Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

1.6.1  Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
1.6.2  Defaults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

1.7  The UPS Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
1.7.1  Initializing the UPS Environment  . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
1.7.2  Changes UPS Makes to your Environment  . . . . . . . . . . . . . . . . . 1-10

Chapter 2:  UPS Operations for the End User  . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1  Determining your Machine’s Flavor  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2  Listing Product Information in a Database  . . . . . . . . . . . . . . . . . . . . . . 2-2

2.2.1  Formatted Output Style  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.2  Condensed Output Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.3  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

2.3  Finding a Product’s Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7



TOC-10 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

2.4  Setting up a Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.4.1  The setup Command for the Typical Case . . . . . . . . . . . . . . . . . . . 2-9
2.4.2  When You Need to Specify Other Options  . . . . . . . . . . . . . . . . . . 2-9

2.5  Running Unsetup on a Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Part II:  Product Installer’s Guide

(Part II is listed is listed in the front section of the table of contents.)

Chapter 3:  General Product Installation Information  . . . . . . . . . . . . . . . . 3-1

Chapter 4:  Finding Information about Products on a Distribution Node . 4-1

Chapter 5:  Installing Products Using UPD  . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Chapter 6:  Installing Products Using UPP . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Chapter 7:  Installing Products using FTP  . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

Chapter 8:  Product Installation: Special Cases . . . . . . . . . . . . . . . . . . . . . . 8-1

Chapter 9:  Troubleshooting UPS Product Installations  . . . . . . . . . . . . . . . 9-1

Part III:  System Administrator’s Guide

(Part III is listed is listed in the front section of the table of contents.)

Chapter 10:  Maintaining a UPS Database . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

Chapter 11:  UPS and UPD Pre-install Issues and General Administration 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Chapter 12:  Providing Access to AFS Products . . . . . . . . . . . . . . . . . . . . . 12-1

Chapter 13:  Bootstrapping CoreFUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

Chapter 14:  Automatic UPS Product Startup and Shutdown  . . . . . . . . . 14-1

Part IV:  Product Developer’s Guide

Chapter 15:  UPS Product Development:  General Considerations . . . . . 15-1
15.1  Product Development Considerations and Recommendations  . . . . . 15-1

15.1.1  All Products (Locally Developed and Third Party) . . . . . . . . . . 15-1
15.1.2  Products that You Develop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
15.1.3  Third-Party Products Requiring a Hard-Coded Path  . . . . . . . . . 15-3



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-11

15.2  Tools for Developing and/or Packaging Products . . . . . . . . . . . . . . . 15-5
15.2.1  Buildmanager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
15.2.2  CVS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
15.2.3  Template_product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

15.3  Directory Structure for a UPS Product Instance  . . . . . . . . . . . . . . . . 15-6

Chapter 16:  Building UPS Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1
16.1  Basic Steps for Making a UPS Product . . . . . . . . . . . . . . . . . . . . . . . 16-1

16.1.1  Build the Directory Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2
16.1.2  Create the Table File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2
16.1.3  Declare the Product to your Development UPS Database . . . . . 16-2
16.1.4  Copy the Product Executable to the bin Directory . . . . . . . . . . . 16-3
16.1.5  Provide Product man Pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3
16.1.6  Test the Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4

16.2  Specifics for Different Categories of Products  . . . . . . . . . . . . . . . . . 16-4
16.2.1  Unflavored Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4
16.2.2  Pre-built Binaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5
16.2.3  Products Requiring Build (In-House and Third-Party)  . . . . . . . 16-6
16.2.4  Overlaid Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-7

16.3  Sample Auxiliary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8
16.3.1  README . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8
16.3.2  INSTALL_NOTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-9
16.3.3  RELEASE_NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-9

Chapter 17:  Making Products Available For Distribution . . . . . . . . . . . . 17-1
17.1  Product Distribution Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1
17.2  Creating Product Tar Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2
17.3  Adding a Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3

17.3.1  Product Categories Defined for KITS  . . . . . . . . . . . . . . . . . . . . 17-3
17.3.2  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-4

17.4  Adding an Independent Table File . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5
17.5  Replacing a Component (Table File or ups Directory)  . . . . . . . . . . . 17-6
17.6  Adding/Changing a Chain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7
17.7  Deleting a Product or Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-8
17.8  Cloning a Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-8
17.9  Including Source in one of Fermilab’s CVS Repositories . . . . . . . . . 17-9
17.10  Product Announcement Policies  . . . . . . . . . . . . . . . . . . . . . . . . . . 17-10

Chapter 18:  Using template_product to Build and Distribute UPS Products 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
18.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
18.2  Accessing template_product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2
18.3  Cloning template_product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-2
18.4  The Top-Level Makefile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3
18.5  Inserting your Product into the Template  . . . . . . . . . . . . . . . . . . . . . 18-4



TOC-12 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

18.6  Building the Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4
18.6.1  Add Build Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4
18.6.2  Run the Initial Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4
18.6.3  Add Build Instructions to Top-Level Makefile  . . . . . . . . . . . . . 18-4
18.6.4  Rebuild Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-5

18.7  Testing your Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-5
18.8  Customizing your Tar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-5
18.9  Adding your Product to a Distribution Node . . . . . . . . . . . . . . . . . . . 18-6

18.9.1  Add Product to fnkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-7
18.9.2  Specify Multiple Flavors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-7

18.10  Adding your Product Source to a CVS Repository  . . . . . . . . . . . . . 18-8
18.11  Removing your Product from a Distribution Node  . . . . . . . . . . . . . 18-8

Chapter 19:  Checklist for Building and Distributing Products  . . . . . . . . 19-1
19.1  Pre-build Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1
19.2  Build the Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2
19.3  Test the Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2
19.4  Distribute to fnkits as “test” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-3
19.5  Announce the Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-3
19.6  Distribute to fnkits as “current” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-4

Part V:  Distribution Node Maintainer’s Guide

(Part V is listed is listed in the front section of the table of contents.)

Chapter 20:  Product Distribution Server Configuration  . . . . . . . . . . . . . 20-1

Chapter 21:  Configuration of the fnkits Product Distribution Node . . . . 21-1

Part VI:  UPS and UPD Command Reference

Chapter 22:  UPS Command Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1
22.1  setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3

22.1.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3
22.1.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3
22.1.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3
22.1.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-5
22.1.5  setup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-6

22.2  unsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-9
22.2.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-9
22.2.2  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-9
22.2.3  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-11
22.2.4  unsetup Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-12



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-13

22.3  ups configure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-13
22.3.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-13
22.3.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-13
22.3.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-13
22.3.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-15
22.3.5  ups configure Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-15

22.4  ups copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-17
22.4.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-17
22.4.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-17
22.4.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-17
22.4.4  Options Valid with -G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-19
22.4.5  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-19
22.4.6  ups copy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-20

22.5  ups declare  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-21
22.5.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-21
22.5.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-21
22.5.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-22
22.5.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-24
22.5.5  ups declare Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-26

22.6  ups depend  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-27
22.6.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-27
22.6.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-27
22.6.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-27
22.6.4  ups depend Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-29

22.7  ups exist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-31
22.7.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-31
22.7.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-31
22.7.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-31
22.7.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-33
22.7.5  ups exist Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-33

22.8  ups flavor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-35
22.8.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-35
22.8.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-35
22.8.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-35
22.8.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-36
22.8.5  ups flavor Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-37

22.9  ups get  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-39
22.9.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-39
22.9.2  All  valid options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-39
22.9.3  ups get Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-40

22.10  ups help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-41
22.10.1  ups help Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-41

22.11  ups list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-43
22.11.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-43
22.11.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-43
22.11.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-43



TOC-14 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

22.11.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-45
22.11.5  ups list Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-49

22.12  ups modify  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-55
22.12.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-55
22.12.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-55
22.12.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-55
22.12.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-56
22.12.5  ups modify Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-57

22.13  ups start  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-59
22.13.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-59
22.13.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-59
22.13.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-59
22.13.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-61
22.13.5  ups start Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-61

22.14  ups stop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-63
22.14.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-63
22.14.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-63
22.14.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-63
22.14.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-65
22.14.5  ups stop Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-65

22.15  ups tailor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-67
22.15.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-67
22.15.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-67
22.15.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-67
22.15.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-69
22.15.5  ups tailor Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-69

22.16  ups touch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-71
22.16.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-71
22.16.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-71
22.16.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-71
22.16.4  ups touch Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-72

22.17  ups unconfigure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-73
22.17.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-73
22.17.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-73
22.17.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-73
22.17.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-75
22.17.5  ups unconfigure Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-75

22.18  ups undeclare  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-77
22.18.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-77
22.18.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-77
22.18.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-78
22.18.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-79
22.18.5  ups undeclare Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-80

22.19  ups verify  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-81
22.19.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-81
22.19.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-81



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-15

22.19.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-81
22.19.4  ups verify Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-83

Chapter 23:  UPD/UPP Command Reference . . . . . . . . . . . . . . . . . . . . . . . 23-1
23.1  upd addproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-3

23.1.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-3
23.1.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-4
23.1.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-4
23.1.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-7
23.1.5  Adding Products to fnkits.fnal.gov  . . . . . . . . . . . . . . . . . . . . . . 23-8
23.1.6  upd addproduct Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-9

23.2  upd cloneproduct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-11
23.2.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-11
23.2.2  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-11
23.2.3  Options Valid with -G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-12
23.2.4  upd cloneproduct Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-12

23.3  upd delproduct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-13
23.3.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-13
23.3.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-13
23.3.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-13
23.3.4  upd delproduct Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-14

23.4  upd depend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-15
23.4.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-15
23.4.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-15
23.4.3  upd depend Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-15

23.5  upd exist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-17
23.5.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-17
23.5.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-17
23.5.3  upd exist Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-17

23.6  upd fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-19
23.6.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-19
23.6.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-19
23.6.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-19
23.6.4  upd fetch Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-21

23.7  upd get  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-23
23.7.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-23
23.7.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-23

23.8  upd install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-25
23.8.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-25
23.8.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-25
23.8.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-25
23.8.4  Options Valid with -G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-28
23.8.5  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-28
23.8.6  upd install Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-29



TOC-16 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

23.9  upd list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-31
23.9.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-31
23.9.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-31
23.9.3  upd list Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-31

23.10  upd modproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-33
23.10.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-33
23.10.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-33
23.10.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-34
23.10.4  More Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-35
23.10.5  upd modproduct Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-36

23.11  upd repproduct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-39
23.11.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-39
23.11.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-40
23.11.3  upd repproduct Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-40

23.12  upd update  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-41
23.12.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-41
23.12.2  Commonly Used Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-41
23.12.3  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-41
23.12.4  upd update Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-43

23.13  upd verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-45
23.13.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-45
23.13.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-45

23.14  upp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-47
23.14.1  Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-47
23.14.2  All Valid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-47
23.14.3  upp Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-47

Chapter 24:  Generic Command Option Descriptions . . . . . . . . . . . . . . . . 24-1
24.1  Alphabetical Option Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1
24.2  More Information on Selected Options  . . . . . . . . . . . . . . . . . . . . . . . 24-7

24.2.1  -e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-7
24.2.2  -H  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-7
24.2.3  -K  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-7
24.2.4  -q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-8
24.2.5  -V  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-9

Chapter 25:  UPS/UPD Command Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1
25.1  Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1

25.1.1  Order of Command Line Elements  . . . . . . . . . . . . . . . . . . . . . . 25-1
25.1.2  Specifying Version/Chain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1
25.1.3  Grouping Option Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-2
25.1.4  Specifying Arguments to Options  . . . . . . . . . . . . . . . . . . . . . . . 25-2
25.1.5  Embedded Spaces in Option Arguments  . . . . . . . . . . . . . . . . . . 25-2
25.1.6  Invalid Option Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-3
25.1.7  Specifying Multiple Products in a Single Command . . . . . . . . . 25-3



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-17

25.1.8  Multiple Occurrences of Same Option Flag . . . . . . . . . . . . . . . . 25-3
25.1.9  Use of Wildcards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-4

25.2  Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-4

Chapter 26:  Product Instance Matching in UPS/UPD Commands  . . . . . 26-1
26.1  Database Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1

26.1.1  UPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1
26.1.2  UPD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-2

26.2  Instance Matching within Selected Database . . . . . . . . . . . . . . . . . . . 26-3
26.2.1  Where Does Instance Matching Take Place? . . . . . . . . . . . . . . . 26-3
26.2.2  Flavor Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-3
26.2.3  Qualifiers: Use in Instance Matching . . . . . . . . . . . . . . . . . . . . . 26-4
26.2.4  Flavor and Qualifier Matching Algorithm . . . . . . . . . . . . . . . . . 26-4

Part VII:  Administrator’s Reference

(Part VII is listed is listed in the front section of the table of contents.)

Chapter 27:  Information Storage Format in Database and Configuration Files

Chapter 28:  Version Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28-1

Chapter 29:  Chain Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-1

Chapter 30:  The UPS Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . 30-1

Chapter 31:  The UPD Configuration File  . . . . . . . . . . . . . . . . . . . . . . . . . 31-1

Chapter 32:  The UPP Subscription File . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-1

Part VIII:  Developer’s Reference

Chapter 33:  Actions and ACTION Keyword Values . . . . . . . . . . . . . . . . . 33-1
33.1  Overview of Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-1
33.2  UPS Command Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-1

33.2.1  UPS Commands as Keyword Values . . . . . . . . . . . . . . . . . . . . . 33-1
33.2.2  “Uncommands” as Keyword Values  . . . . . . . . . . . . . . . . . . . . . 33-2

33.3  Chain Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-3
33.3.1  Chains as Keyword Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-3
33.3.2  “Unchains” as Keyword Values . . . . . . . . . . . . . . . . . . . . . . . . . 33-3

33.4  The “Unknown Command” Handler  . . . . . . . . . . . . . . . . . . . . . . . . . 33-3
33.5  Actions Called by Other Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-4

Chapter 34:  Functions used in Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-1
34.1  Overview of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-1
34.2  Reversible Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-1
34.3  Function Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-2

34.3.1  addAlias  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-2



TOC-18 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 

34.3.2  doDefaults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-3
34.3.3  envAppend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-3
34.3.4  envPrepend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-4
34.3.5  envRemove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-4
34.3.6  envSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-5
34.3.7  envSetIfNotSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-5
34.3.8  envUnset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-5
34.3.9  exeAccess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-6
34.3.10  exeActionOptional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-6
34.3.11  exeActionRequired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-6
34.3.12  execute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-7
34.3.13  fileTest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-7
34.3.14  pathAppend  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-8
34.3.15  pathPrepend  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-8
34.3.16  pathRemove  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-9
34.3.17  pathSet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-9
34.3.18  prodDir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-9
34.3.19  setupEnv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-10
34.3.20  setupOptional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-10
34.3.21  setupRequired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-10
34.3.22  sourceCompileOpt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-11
34.3.23  sourceCompileReq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-11
34.3.24  sourceOptCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-12
34.3.25  sourceOptional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-13
34.3.26  sourceReqCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-13
34.3.27  sourceRequired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-14
34.3.28  unAlias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-14
34.3.29  unProdDir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-14
34.3.30  unsetupEnv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-15
34.3.31  unsetupOptional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-15
34.3.32  unsetupRequired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-16
34.3.33  writeCompileScript  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-16

34.4  Functions under Consideration for Future Implementation . . . . . . . 34-17
34.5  Examples of Functions within Actions  . . . . . . . . . . . . . . . . . . . . . . 34-18

34.5.1  A setup Action  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-18
34.5.2  A “declare as current” Action  . . . . . . . . . . . . . . . . . . . . . . . . . 34-18

34.6  Local Read-Only Variables Available to Functions  . . . . . . . . . . . . 34-18
34.6.1  List of Current Read-Only Variables . . . . . . . . . . . . . . . . . . . . 34-19
34.6.2  Read-Only Variables under Consideration for the Future . . . . 34-21

Chapter 35:  Table Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-1
35.1  About Table Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-1
35.2  When Do You Need to Provide a Table File? . . . . . . . . . . . . . . . . . . 35-1
35.3  Recommendations for Creating Table Files . . . . . . . . . . . . . . . . . . . . 35-2



Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) TOC-19

35.4  Table File Structure and Contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-2
35.4.1  Basic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-2
35.4.2  Grouping Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-3
35.4.3  The Order of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-3

35.5  Product Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-4
35.5.1  Defining Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-4
35.5.2  Product Dependency Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . 35-4

35.6  Table File Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-6
35.6.1  Example Illustrating Use of FLAVOR=ANY  . . . . . . . . . . . . . . 35-6
35.6.2  Example Showing Grouping  . . . . . . . . . . . . . . . . . . . . . . . . . . . 35-6
35.6.3  Example with User-Defined Keywords . . . . . . . . . . . . . . . . . . . 35-7
35.6.4  Examples Illustrating ExeActionOpt Function  . . . . . . . . . . . . . 35-8

Chapter 36:  Scripts You May Need to Provide with a Product  . . . . . . . . 36-1
36.1  configure and unconfigure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-1
36.2  tailor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-3
36.3  current and uncurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-3
36.4  start and stop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-3

Chapter 37:  Use of Compile Scripts in Table Files  . . . . . . . . . . . . . . . . . . 37-1
37.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-1
37.2  Usage Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-1

Chapter 38:  Creating and Formatting Man Pages  . . . . . . . . . . . . . . . . . . 38-1
38.1  Creating the Source Document (Unformatted)  . . . . . . . . . . . . . . . . . 38-2

38.1.1  Source File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-2
38.1.2  Man Page Information Categories  . . . . . . . . . . . . . . . . . . . . . . . 38-3
38.1.3  Example Source File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-4

38.2  Formatting the Source File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-5
38.2.1  nroff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-5
38.2.2  groff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-6

38.3  Converting your Man Page to html Format . . . . . . . . . . . . . . . . . . . . 38-6

Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GLO-1

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDX-1



TOC-20 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014B) 



About this Manual INT-1

About this Manual

This chapter provides an introduction to the Complete Guide and Reference Manual for UPS, 
UPD and UPP v4.  In particular you will find:

• the overall structure, the purpose and the intended audience of the manual

• what parts of the manual you need

• where to obtain this manual and where to look for updates

• the typeface conventions and symbols used throughout the document

• an invitation to readers to send us comments

This manual is published in three submanuals:  GU0014A, GU0014B, and GU0014C.  The 
structure of the document and its division into these sections is discussed in the following 
sections. 

1.  Document Structure, Purpose and Intended Audiences

The UPS and UPD v4 Reference Manual is intended for several different user groups as listed 
on the next page.  To best accommodate the different types of users, the manual is divided into 
five user guides (Parts I-V):

• Part I Overview and End User’s Guide

• Part II Product Installer’s Guide

• Part III System Administrator’s Guide

• Part IV Product Developer’s Guide

• Part V Distribution Node Maintainer’s Guide

 and three reference manuals (Parts VI-VIII)

• Part VI UPS and UPD Command Reference

• Part VII Administrator’s Reference

• Part VIII Developer’s Reference

The user guides explain and illustrate the UPS/UPD/UPP tasks associated with each user 
group.  The reference guides provide detailed information on commands, concepts, file 
structure/contents, and so on.  On the following page is a guide to which parts of the manual 
you are likely to need, according to your job functions.  Notice that we recommend Parts I and 
VI for all users:



INT-2 About this Manual 

Parts User Functions

A:  For All Users

Part I Overview and End User’s Guide End Users:
List product information in a UPS database on 
a user system;
Access installed software products
Access FermiToolsa software products
(Other user groups’ functions described later 
in table)

a. Fermilab-written software products that are made publicly available.

Part VI UPS and UPD Command Reference

B:  For Product Installers, UPS Database Administrators, System Administrators of User 
Machines, Distribution Node Maintainers

Part II Product Installer’s Guide Product Installers:
Install software products from a UPS product 
distribution node into a UPS database on a 
user system;
Install products into the AFS-space UPS data-
base

Part III System Administrator’s Guide
and
Part VII Administrator’s Reference

System Administrators, UPS Database Admin-
istrators:
Maintain UPS products in a UPS database;
Install UPS/UPD/UPP on a user system;
Configure UPS on a user system;
Configure UPD on a user system;
Configure UPP on a user system;
Configure an installed product to start/stop 
automatically at boottime/shutdown

Part V Distribution Node Maintainer’s Guide Distribution Node Maintainers:
Install UPS/UPD on a distribution system;
Configure UPS and UPD on a distribution 
system;
Configure Web and anonymous FTP servers 
on a distribution system
Maintain UPS database on a distribution sys-
tem

C:  Product Developers

Part IV Product Developer’s Guide Product Developers and Maintainers:
Develop and maintain software products that 
are intended to be distributed in accordance 
with UPS standards;
Adapt pre-existing or third-party software to 
conform to UPS standards;
Distribute products

Part VIII Developer’s Reference



About this Manual INT-3

The table above lists rather generally the topics that the manual covers.  Note that it is not the 
purpose of this document to provide information on:

• general UNIX system administration

• general UNIX or Fermilab information (see instead UNIX at Fermilab, GU0001)

• the use of any particular software product other than UPS/UPD/UPP

2.  Availability

Copies of the UPS and UPD v4 Reference Manual (GU0014A, B, and C), can be obtained 
from the following sources:

Web
http://www.fnal.gov/docs/products/ups/Referen
ceManual/

This can be accessed under Documentation on the Computing 
Division home page.  Search using any of the following keywords:  
afs, develop(ment), distribute(tion), fermitools, GU0014, 
install(ation), kits, maintain(tenance), man page, product, system 
administration, unix, upd, upp, ups

Paper Copies Wilson Hall, 8th floor, NE (just across from what used to be the 
Computing Division library)

3.  Updates

Pending subsequent releases of this manual, updates will be maintained on the Web with the 
on-line version of the manual.  To get there from the Computing Division home page, select 
Documentation, request GU0014 and follow the pointers (see “Web” under section 2. 
Availability).

4.  Conventions

The following notational conventions are used in this document:

bold Used for product names (e.g., UPS).      

italic Used to emphasize a word or concept in the text.  Also 
used to indicate logon ids and node names.

typewriter Used for filenames, pathnames, contents of files, output of 
commands.

CDF and D0 collaborators:  Also see A UNIX Based Software Management System 
(GU0013) at 
http://www-cdf.fnal.gov/offline/code_management/run2_cmgt/run
2_cmgt.html to find information describing how UPS and UPD have been implemented 
in your experiments’ code management systems.



INT-4 About this Manual 

typewriter-bold Used to indicate commands and prompts.

[...] In commands, square brackets indicate optional command 
arguments and options.

| When shown in a command example (e.g., x|y|z), 
separates a series of options from which one may or must 
be chosen (depends if enclosed in square brackets).  In 
UNIX commands, used to pipe output of preceding 
command to the following one.

’ ... ’ Single vertical quotes indicate apostrophes in commands.

"  ...  " Double vertical quotes indicate double quotes in 
commands

... In a command, means that a repetition of the preceding 
parameter or argument is allowed. 

% Prompt for C shell family commands (% is also used 
throughout this document when a command works for 
both shell families).

$ Prompt for Bourne shell family commands; also standard 
UNIX prefix for environment variables (e.g., $VAR means 
“the value to which VAR is set”).

\ UNIX standard quoting character; used in commands 
throughout the manual to indicate that the command 
continues to the next line

<...> In commands, variables, pathnames and filenames, angle 
brackets indicate strings for which reader must make a 
context-appropriate substitution.  For example, 
$<PRODUCT>_DIR becomes $EMACS_DIR for the 
product emacs.

{ } In local read-only variables, e.g., ${UPS_PROD_DIR}, 
string should be used as shown with the {}.

All command examples are followed by an implicit carriage return key.

Some of the files discussed in this document are shell family-specific, and thus come in pairs.  
Their filenames carry the extensions .sh and .csh.  We often refer to a pair of these files 
as filename.[c]sh.

The following symbols are used throughout this document to draw your attention to specific 
items in the text:

A “bomb”; this refers to something important you need to know in order to avoid a pitfall.

This symbol is intended to draw your attention to a useful hint.



About this Manual INT-5

5.  Your Comments are Welcome!

The UPS and UPD v4 Reference Manual may contain some errors, however we endeavor to 
minimize the error count!  We encourage all the readers of this document to report back to us:

• errors or inconsistencies that we have overlooked

• any parts of the manual that are confusing or unhelpful -- please offer constructive 
suggestions!

• other topics to include (keeping in mind the purpose of the manual)

• tricks, hints or ideas that other users might find helpful

Send your comments via email to cdlibrary@fnal.gov.



INT-6 About this Manual 



Product Installer’s Guide II-1

Part II   Product Installer’s Guide

Chapter 3:  General Product Installation Information

This chapter provides general information you need to know before you start 
installing products.  It discusses:

• the three ways to install UPS products (UPD, UPP and FTP)

• how to register your node to download products from KITS

• how to determine where UPD installs products on your system

• how to declare a product instance to a database manually

• some questions that can come up during an installation

• post-installation procedures required for some products

• how to handle networking restrictions at off-site locations

Chapter 4:  Finding Information about Products on a Distribution 
Node

This chapter discusses finding information about products on a distribution 
node, in particular:

• how to find out which UPS products are available on a distribution 
node

• how to list a product’s dependencies as declared on the distribution 
node

• product file permissions and pathnames for downloading products 
from fnkits via FTP

• special instructions for downloading proprietary products from fnkits

Chapter 5:  Installing Products Using UPD

This chapter guides you through installing products from a UPS/UPD 
product distribution node using the UPD command upd install.

Chapter 6:  Installing Products Using UPP

UPP can be used for several functions as described briefly in section 1.1 
Introduction to UPS, UPD and UPP, and in detail in Chapter 32:  The UPP 
Subscription File.  This chapter describes how to use UPP to install 
products.



II-2 Product Installer’s Guide 

Chapter 7:  Installing Products using FTP

This chapter describes how to download a product using FTP, install it, and declare it to a local 
UPS database.

Chapter 8:  Product Installation: Special Cases

This chapter provides product installation information about specific cases.  It discusses:

• how to install products requiring special privileges

• how to install into a local products area using the installation of UPD in AFS space

• how to install products into the AFS-space UPS products area

Chapter 9:  Troubleshooting UPS Product Installations

This chapter provides a few hints if things don’t seem to work after installing a product.



General Product Installation Information 3-1

Chapter 3:   General Product Installation 

Information

This chapter provides general information you need to know before you start installing 
products.  It discusses:

• the three ways to install UPS products (UPD, UPP and FTP)

• how to register your node to download products from KITS

• how to determine where UPD installs products on your system

• how to declare a product instance to a database manually

• some questions that can come up during an installation

• post-installation procedures required for some products

• how to handle networking restrictions at off-site locations

Installing products into AFS space is not covered in this chapter; see section 8.3 Installing 
Products into AFS Space.

3.1  Installation Methods for UPS Products

There are three ways to access products from a UPS product distribution node: using UPD, 
FTP or UPP (which is actually a layer on top of UPD).  Each method is described briefly 
below, and then in more detail in the following chapters.  Information on troubleshooting a 
problematic product installation is provided in Chapter 9:  Troubleshooting UPS Product 
Installations.

3.1.1  UPD

The UPD product includes the upd install command for installing products.  This is the 
most widely-used product installation method on machines running UPS/UPD.  Chapter 5:  
Installing Products Using UPD is dedicated to describing this process.  Installation parameters 
are set in the local node’s UPD configuration.  The aspects of the configuration that you as a 
product installer need to be aware of are described in section 3.3 What You Need to Know 
about Your System’s UPD Configuration; the UPD configuration is described in detail in 
Chapter 31:  The UPD Configuration File.  

The upd install command performs the following functions:

• retrieves the specified product instance, and by default its dependencies, from a 
distribution node

• unwinds the product (if transferred in tar format) and installs it, and by default its 
dependencies, on the user node according to the node’s UPD configuration



3-2 General Product Installation Information 

• declares the product, and by default its dependencies, to the database specified in the 
node’s UPD configuration

• either resolves dependencies or prints to screen the commands you will need to issue in 
order to do so

3.1.2  UPP

UPP is a layer on top of UPD that can be used to perform a variety of tasks, as described in 
Chapter 32:  The UPP Subscription File.  Regarding product installation, it can be configured 
to run upd install for specified products under specified conditions.  Dependencies of 
the specified products are updated automatically, as well, so that the integrity of the products is 
maintained. UPP can also be given instructions to run the necessary ups declare 
commands to resolve dependencies when a product installation finishes.  UPP can be run 
manually, or it can be automated using a tool like cron.  Chapter 6:  Installing Products Using 
UPP illustrates how to use it to install products.

3.1.3  FTP

Anonymous FTP is available on fnkits, and may be available on other UPS product 
distribution nodes.  FTP does not take advantage of the UPD configuration.  It can be used 
only to retrieve products; it is left to the installer to unwind and declare them.  Furthermore, if 
the table file and/or the ups directory is (are) not included the tar file, it (they) must be 
retrieved separately.  Chapter 7:  Installing Products using FTP is describes using FTP to 
install products.

FTP is not recommended for installations into the usual product area; UPD is designed and 
configured specifically for that and should be used instead.  FTP is more suited to product 
installations into non-standard locations on your node, e.g., into your own area for use just by 
you.  

On fnkits, FTP is most useful for off-site users who want to download FermiTools products, 
which are located under the /pub directory.  You do not need to be a registered user to obtain 
the FermiTools products.1

3.2  User Node Registration for KITS

In order to download most products from the KITS database, the machine you’re using must 
be registered with fnkits.fnal.gov.  All machines in the fnal.gov domain are automatically 
registered.  Off-site machines need to register using the Product Distribution Platform 
Registration Request form at 
http://www.fnal.gov/cd/forms/upd_registration.html.

1. All machines in the fnal.gov domain are automatically registered to download 
products from KITS.  Off-site machines need to register using the Product Distribution 
Platform Registration Request form at 
http://www.fnal.gov/cd/forms/upd_registration.html. 



General Product Installation Information 3-3

If you only want to download FermiTools products, which are located under the /pub 
directory in KITS, you do not need to be using a registered node.  FermiTools are made 
available to the general public.

3.3  What You Need to Know about Your Sys-
tem’s UPD Configuration

When you install a product using UPD (or UPP), the installation parameters are controlled by 
the UPD configuration.  The UPS configuration file for the database you’re using points to a  
UPD configuration file.  These configuration files described in Chapter 30:  The UPS 
Configuration File and Chapter 31:  The UPD Configuration File.   The UPD configuration 
file typically consists of one or more stanzas, each of which:

• identifies certain product instances, products or groups of products

• specifies a database on the local system in which to declare a product matching the 
identifier

• specifies locations on the local system in which UPD is to put a matched product and its 
related files

• (optionally) lists actions for UPS/UPD to perform either just before or just after 
declaring the product

3.3.1  Location of UPD Configuration File

The Default UPD Configuration File

The UPD configuration file is stored as:

${UPD_USERCODE_DIR}/updconfig

where the keyword UPD_USERCODE_DIR is set in the UPS configuration file.  It tells you 
the location of the database containing the UPD configuration file.  When UPD gets setup, the 
read-only variable ${UPD_USERCODE_DIR} gets defined and set to the same value as the 
keyword.  (The read-only variable ${UPD_USERCODE_DB} also gets defined and set to the 
database directory containing ${UPD_USERCODE_DIR}).  To find the value of 
UPD_USERCODE_DIR, you can list the UPS configuration file, e.g.,:

% less $PRODUCTS/.upsfiles/dbconfig

or you can first setup UPD, and the request the variable value, e.g.,:

% echo $UPD_USERCODE_DIR

or

% env | grep UPD



3-4 General Product Installation Information 

Overriding the Default UPD Configuration

If your system is set up with multiple UPS databases configured to point to different UPD 
configurations, you can choose to specify a database on the upd install command line 
pointing to a UPD configuration file other than the default.  First, verify that the database you 
specify points to the UPD configuration you want.  To find out, run the command:

% ups list -z <database> -K UPD_USERCODE_DIR

Note that if this command returns empty quotes, it means the database specifies no 
configuration file.  In this case the default UPD configuration will not be overridden.

3.3.2  Where Products Get Declared

The keyword UPS_THIS_DB, set in the UPD configuration file, identifies the database into 
which UPS declares the product (i.e., the directory that UPD specifies in the ups declare 
-z <database> option).  This keyword may be set differently in different stanzas, thereby 
causing different products to be declared in different databases.

3.3.3  Where Products Get Installed

For organizational reasons it is usually preferable to have UPD configured to install all the 
UPS products for a database in one area.  In the UPS configuration file, typically the keyword 
PROD_DIR_PREFIX gets set to the product root directory prefix under which the products 
reside.  The UPD configuration file then defines product root directory locations in terms of 
PROD_DIR_PREFIX.  The quantities you need to be aware of within the UPD configuration 
file are: 

UPS_PROD_DIR The product root directory.  The upd install command runs 
the ups declare command and uses this value as the argument 
to the -r option.  It is usually defined relative to 
PROD_DIR_PREFIX.

UNWIND_PROD_DIR The absolute path to directory where products get unwound.  In 
most cases, it’s the product root directory (in terms of read-only 
variables: ${PROD_DIR_PREFIX}/${UPS_PROD_DIR}), 
however in AFS and some NFS mounting configurations, products 
are often unwound and installed in different locations (see section 
8.3 Installing Products into AFS Space).

You should not specify the product location in the upd install command unless you 
want to override the default.



General Product Installation Information 3-5

3.4  Declaring an Instance Manually

A product instance must exist on the system before it can be declared to a UPS database1.  
Product declaration is done with the ups declare command.  Declaring a product 
instance makes it known to UPS, and therefore retrievable within the UPS framework.  
Normally products are installed on user nodes using the upd install command which, in 
addition to downloading and installing the product, runs ups declare to make the initial 
declaration of the product to the local UPS database.  If you use FTP to download a product, 
then you’ll need to declare it manually.  Refer to Chapter 7:  Installing Products using FTP for 
details about installing with FTP.

If you use upd install and you have more than one database, refer to section 5.2 How 
UPD Selects the Database to see how UPD determines the database for the declaration.

3.4.1  The ups declare Command

Before declaring, make sure the product is unwound into in its final location.  Also make sure 
that you’ve downloaded the table file and installed it in an appropriate directory.  For an initial 
declaration you must specify at a minimum:  the product name, product version, product root 
directory, flavor and table file name2.   

The full command description and option list is in the reference section 22.5 ups declare.  Here 
we show commonly used command options (see the notes regarding -z, -U and -M which 
follow):

% ups declare <product> <version> -r /path/to/prod/root/dir/ \      
-f <flavor> [-z /path/to/database] [-U /path/to/ups/dir] \       
[-m <table_name>.table] [-M /path/to/table/file/dir] \ 
[<chainFlag>]

1) If the database is not specified using -z, UPS declares the product into the first listed 
database in $PRODUCTS (see section 26.1 Database Selection Algorithm for more 
information).

2) If the product's ups directory tar file was unwound in the default location      
($<PRODUCT>_DIR/ups), then -U /path/to/ups/dir is not needed.  If the 
ups directory is located elsewhere (or named differently), this specification must be 
included.  If specified as a relative path, it is taken as relative to the product root 
directory.

1. At least a rudimentary root directory hierarchy for the product, its table file directory 
and table file must exist before declaration.
2. Two exceptions:  (1) if the product consists only of a table file that sets up a list of 
dependencies, there is no product root directory; and (2) if the product has no table file 
(very rare) then there is no table file name.



3-6 General Product Installation Information 

3) If the product’s table file was placed in either of the two default locations (under 
/path/to/database/<product>/ or in the product’s ups directory), then 
-M /path/to/table/file/dir is not needed.  Only use the -M option if you 
have moved the table file to a separate location where UPS won’t otherwise find it.  If 
specified as a relative path, it is taken as relative to the product root directory.  See 
section 28.4 Determination of ups Directory and Table File Locations for details on 
how UPS finds the table file.

 Unless the product you’re declaring has no table file (true for very few products), make 
sure its location gets declared properly, either explicitly or by default.  Otherwise, users 
will need to specify its name and location on the command line every time they want to 
run or operate on the product.  If it is neither declared nor specified on the command 
line, UPS/UPD assumes there is no table file.

You can opt to declare a chain to the product instance at this time or in a later declaration.  To 
declare a chain, include the appropriate chain flag in the command (see section 1.3.5 Chains 
for a listing).

3.4.2  Examples

For more examples see the reference section 22.5 ups declare.

Declaration of New Product to Non-default Database

The following command shows a fairly typical product declaration.  We’ll install a product 
called histo v4_0 onto a SunOS+5 node.  We assume the product instance’s ups directory is 
maintained under its product root directory, and that it contains the table file.  We include the 
-z option to indicate that we want to override the default database selection.  This is the first 
instance of this product to be declared to this database, therefore the ups declare 
command automatically creates the appropriate product directory under the specified database:

% ups declare histo v4_0 -f SunOS+5 -m histo.table -z $MY_DB -r\ 
/path/to/products/SunOS+5/histo/v4_0

We can run a ups list -l command to see all the declaration information (include -a 
because it’s not yet declared current):

% ups list -alz $MY_DB histo

DATABASE=/path/to/ups_database/declared

        Product=histo   Version=v4_0    Flavor=SunOS+5

                Qualifiers=""   Chain=""

                Declared="1998-04-17 22.08.30 GMT"

                Declarer="aheavey"

                Modified="1998-04-17 22.08.30 GMT"

                Modifier="aheavey"

                Home=/path/to/products/SunOS+5/histo/v4_0

                No Compile Directive

                Authorized, Nodes=*

                UPS_Dir="ups"

                Table_Dir=""

                Table_File="v4_0.table"

                Archive_File=""

                Description=""

                Action=setup

                        prodDir()

                        setupEnv()

                        addalias(histo,${UPS_PROD_DIR}/bin/histo)



General Product Installation Information 3-7

                        addalias(hsdir,${UPS_PROD_DIR}/bin/hsdir)

                        envSet(HISTO_INC,${UPS_PROD_DIR}/include)

Declaration of Additional Instance of a Product

In the following example we declare an additional instance of histo, of the same version, but 
for the flavor IRIX+5.  Again the table file resides under the product root directory’s ups 
subdirectory, and we override the default database.  This time we declare it with the chain 
“test” (-t):

% ups declare histo v4_0 -tf IRIX+5 -m histo.table -z $MY_DB -r\ 
/path/to/products/IRIX+5/histo/v4_0

Running a ups list -a to see what the database now contains for this product, we find:

% ups list -az $MY_DB histo

DATABASE=/path/to/ups_database/declared

        Product=histo   Version=v4_0    Flavor=SunOS+5

                Qualifiers=""   Chain=""

        Product=histo   Version=v4_0    Flavor=IRIX+5

                Qualifiers=""   Chain=test

Declaration with Table File Located in Database

Depending on your configuration, you may want the table file to reside in the product’s 
subdirectory under the database (e.g., $PRODUCTS/<product>/<table_file>).

A table file for the product must be placed in this location before the instance is declared to the 
database.  Therefore, if you are declaring the first instance of a product to the database, you 
need to manually create the product directory under the database and copy the table file into it 
before declaring the instance.

You still do not need to specify the table file location (-M option) on the ups declare 
command line; UPS will find it here.

3.5  Installation FAQ

3.5.1  What File Permissions Get Set?

Product files get downloaded and installed with the same permissions that they have on the 
distribution node, minus the umask set in your login files.  We recommend that you set your 
umask to 002 before installing any products to ensure that you don’t remove the group write 
access for table files.



3-8 General Product Installation Information 

3.5.2  You’re Ready to Install: Should you Declare Qualifi-
ers?

If a product instance is declared with one or more qualifiers on the distribution node, you can 
choose whether you want to declare it on your system with or without them.  If you don’t need 
the qualifiers in order to distinguish between different copies of the same product, it’s usually 
easiest to declare products without them.  Otherwise, users must enter the qualifiers on the 
command line exactly as they appear in the product declaration each time they want to setup 
that product instance or perform other UPS operations on it.  The files that UPS uses to 
manage each product allow comment lines (see section 27.1 in Chapter 27:  Information 
Storage Format in Database and Configuration Files); this provides a way of recording 
qualifier information if you choose not to declare the qualifiers explicitly.

3.5.3  What if an Install Gets Interrupted?

Normally UPD deletes the installed portions of a product when an installation process gets 
interrupted, and it doesn’t declare the pieces that failed to install.  Therefore, you generally 
don’t need to worry about cleaning up before reattempting the installation.  Just issue the 
install command again, the same way as you did the first time.  

However, if you interrupted the process for some reason (e.g., you saw it was running out of 
space), then you’ll need to remove by hand the piece that was being installed at the time of the 
interruption.  How will you know?  Reattempt the install, and if you get a message similar to 
this:

directory /a/b/c already exists, will not overwrite.

then you’ll need to remove the specified directory/file(s).

3.5.4  What if a Product was Installed under a Different 
Name?

Giving a product a new name upon installation can cause problems in dependency trees.  This 
practice is not supported, and is certainly not encouraged, but it can be made to work.  If you 
have a product that needs to find, for example, $MYPROD_DIR, but myprod has been 
installed on your system with a different name, e.g., fermi_myprod, then you may need to edit 
the table file (described in Chapter 35:  Table Files).  Normally product installers never need to 
touch the table file, but this is an exception.  If the provided table file for myprod was written 
by a developer who has no knowledge of the name change on your system, the table file 
probably contains:

ACTION=SETUP

   prodDir()

where prodDir() instructs the setup command to set the variable $<PRODUCT>_DIR 
(see 22.1.4 More Detailed Description under section 22.1 setup).  On your system then, the 
variable $FERMI_MYPROD_DIR will get set, but $MYPROD_DIR won’t.  To ensure that 
you also get the variable $MYPROD_DIR, edit the table file and under ACTION=SETUP add 
the function:

envSet(MYPROD_DIR, ${UPS_PROD_DIR})  



General Product Installation Information 3-9

3.6  Post-Installation Procedures

Some products require that you perform supplementary steps during or after the installation 
process, for example copying files to other locations or creating needed files or directories.  
The product’s INSTALL_NOTE file should contain any instructions for completing the 
installation.  Commonly required actions on the installer’s part include configuring and/or 
tailoring the product instance.

3.6.1  Configuring a Product

Post-installation procedures that can be completely automated are typically collected together 
such that the command ups configure executes them.  This command gets executed by 
default, as necessary, when the product instance is declared.  Otherwise, you can run ups 
configure manually at any time after declaration to configure the product instance.

The configuration may involve creating links to the product root directory from other areas 
(see section 8.1 Installing Products that Require Special Privileges).  If the area is not identical 
for each node (i.e., same path but separate areas) accessing the UPS database in which the 
product instance has been declared, then you will need to run the ups configure 
command manually on each node that mounts a unique area.  If you are not sure whether you 
need to configure a product instance on each node, look through the configuration steps in the 
table file under ACTION=CONFIGURE to see what they do.

3.6.2  Tailoring a Product

Tailoring is the aspect of the product implementation that requires input from the product 
installer (e.g., specifying the location of hardware devices for a software driver package).  If 
the product requires tailoring, a file is usually supplied in the format of an interactive 
executable (script or compiled binary), and it is run via the UPS command ups tailor.   
You must explicitly tailor the product instance using ups tailor; tailoring is not 
performed automatically.

Tailoring is generally allowed on any node of a cluster, however we strongly recommend that 
you perform any node-specific tailoring from that node, or flavor-specific tailoring from a 
node of that flavor to avoid mismatches.

3.7  Networking Restrictions at your Site

Some off-site locations may impose networking restrictions which can interfere with UPD.

3.7.1  Proxying Webserver

If all web traffic is channeled through a proxying webserver at your site, you need to provide 
the URL of this server to UPD.  Since UPD commands go through a web server, they will fail 
otherwise (the error message will indicate either "Destination unreachable" or "Timeout").  



3-10 General Product Installation Information 

Look at your web browser configuration to find out what proxy you’re using.  In Netscape this 
would be under EDIT/PREFERENCES.../ADVANCED/PROXIES.  Set the variable http_proxy 
(lower case) to the URL of your server, e.g., (for C shell):

% setenv http_proxy "http://some.host.name:8000" 

3.7.2  Firewall for Incoming TCP Connections

If your site firewalls incoming TCP connections, but allows outgoing ones, you’ll need to set 
the FTP_PASSIVE variable to the value 1, e.g., (for C shell):

% setenv FTP_PASSIVE 1

This will make UPD use “passive mode” FTP transfers.



Finding Information about Products on a Distribution Node 4-1

Chapter 4:   Finding Information about Products 

on a Distribution Node

This chapter discusses finding information about products on a distribution node, in particular:

• how to find out which UPS products are available on a distribution node

• how to list a product’s dependencies as declared on the distribution node

• product file permissions and pathnames for downloading products from fnkits1 via FTP

• special instructions for downloading proprietary products from fnkits

4.1  Listing Products on a Distribution Node

Both UPD and UPP can be used to list the product instances installed in a distribution 
database.  We show you how to do this below.

For information on the KITS database (on fnkits) or the products in AFS space, you can also 
use the Web. Fill out and submit the form at http://www.fnal.gov/upc/.  This page 
can be accessed from the Computing Division’s documentation search page 
(http://cddocs.fnal.gov/cfdocs/productsDB/docs.html; scroll down and 
click on OSS Product Status Request Page under Additional Information).  See the 
newsgroups fnal.announce.products and fnal.announce.unix for recent 
product release information.

4.1.1  Using UPD

The upd list command is available to list information about product instances on the 
server.  It just performs ups list (described in section 2.2 Listing Product Information in 
a Database) on a distribution database, and uses the same set of options.  Two output styles are 
provided: a formatted one that is easy for users to read, and a condensed one for parsing by a 
subsequent command or a script.

You can specify the information you want contained in the output by including various options 
(see the reference section 22.11 ups list for details).  As is standard in UPS/UPD, if no chain, 
version or flavor is specified, and -a (for all instances) is not specified, it returns only the 
instance declared as current for the best-matched flavor of the requesting machine.  All the 
UPD commands use the fnkits host as the default, which accesses the KITS database.  Use 
the -h <host> option to specify a different host.  

1.  fnkits.fnal.gov is the Computing Division’s central product server.  Its distribution data-
base is generally referred to as KITS.  



4-2 Finding Information about Products on a Distribution Node 

The upd list command has the following syntax:

% upd list [<options>] [<product>] [<version>]

Most of the sample commands listed below use the -K+ option which condenses the standard 
output onto a single line.  The -K+ option is described in section 2.2.2 Condensed Output 
Style.

List Current Instance of a Product

Most often, people want to know if there is a current version of a product that will run on their 
machine.  Because of the defaults in place, you can issue the simple command:

% upd list [-K+] [<product>]

For example, take the product tex.  To request the condensed output, enter:

% upd list tex -K+

"tex" "v3_14159" "SunOS+5" "" "current"

"tex" "v3_1415a" "SunOS" "" "current"

List All Instances for One Flavor of a Product

Say, for example, you wanted to know what instances of ximagetools were available from 
fnkits for the flavor SunOS+5.  You could issue the command:

% upd list -af SunOS+5 ximagetools -K+

"ximagetools" "v3_0b" "SunOS+5" "" ""

"ximagetools" "v3_1" "SunOS+5" "" "old"

"ximagetools" "v3_1_1" "SunOS+5" "" ""

List All Current Products for Flavor of Machine

For this request, you may just want the product name and version.  Use the -K option 
accordingly (output edited for brevity):

% upd list -Kproduct:version

"acnet" "v1_0"

"alerts" "v0_1"

"apache" "v1_3_3"

"bash" "v2_02"

...

"ximagetools" "v4_0"

"xntp" "v3_5_93"

"xntp" "v3_4"

"xpdf" "v0_5"



Finding Information about Products on a Distribution Node 4-3

Obtain Detailed Listing for a Product Instance

To find all the information associated with a product instance on the server, use the -l option 
(output edited for brevity): 

% upd list -l tex v3_14159

DATABASE=/ftp/upsdb

        Product=tex     Version=v3_14159        Flavor=SunOS+5

                Qualifiers=""   Chain=current

                Declared="1998-09-10 07.39.47 GMT:1998-09-10 07.39.47 GMT"

                Declarer="updadmin:updadmin:updadmin:updadmin"

                Modified="1998-09-10 07.39.47 GMT:1998-09-10 07.39.47 GMT"

                Modifier="updadmin:updadmin:updadmin:updadmin"

                Home=/ftp/products/tex/v3_14159/SunOS+5/tex_v3_14159_SunOS+5

                ...

                Action=setup

                        setupRequired(tex_files)

                        prodDir()

                        setupEnv()

                        pathPrepend(PATH,${UPS_PROD_DIR}/bin)

                        envSet(TEXMFMAIN,${UPS_PROD_DIR}/share/texmf)

4.1.2  Using UPP

UPP requires what we call a subscription file which tells it what products to look for on a 
designated distribution node, and what functions to perform when it detects that new versions 
of these products have been released there.  One of the functions UPP can perform is 
notification.  It is therefore a useful tool for keeping abreast of changes/enhancements to your 
favorite products and to get information on new ones.

Your job is to create a UPP subscription file and run the upp command.  The subscription 
file has a structure that includes a header and at least one “stanza”.  A stanza is bracketed by 
begin and end.  Each product you want to monitor requires its own stanza (or a separate 
subscription file, but that is more cumbersome).  The upp command can be automated and 
run periodically (for example from cron).  The information below illustrates how to write a 
subscription file for the current purpose.  For more information, refer to Chapter 6:  Installing 
Products Using UPP and Chapter 32:  The UPP Subscription File.

Sample Subscription File

This example includes a header (the first five lines in the sample file) as required, and one 
stanza.  This file configures UPP to send email to a specified address when it detects either of 
two conditions on the designated distribution server:

• any new product has been added

• a version of exmh of flavor SunOS+5.5 has been chained to “current” 

The file listing is on the left and comments are provided on the right:

file = upp This identifies the file as a UPP subscription file.

mail_address = joe@fnal.gov Send mail notifications to joe@fnal.gov.

dist_node = fnkits.fnal.gov Use fnkits.fnal.gov as the UPD server node to 
query.



4-4 Finding Information about Products on a Distribution Node 

The UPP Command

You can run UPP interactively by issuing the upp command.  The upp command line is 
very simple:

% upp [-v[v...]] <subscript-file-1> [<subscript-file-2>...]

The -v option requests verbose output; more v’s (up to four) provide progressively more 
verbosity.  The upp command has no direct output (unless verbosity is turned on), rather it 
mails a report of any actions taken to the email address specified in the subscription file.  

There are no other command options for upp; its behavior is controlled entirely by the 
subscription file(s).

Automate UPP Using cron

You can add a cron job that first sets up UPD then runs UPP with a subscription file (shown 
here as upp.subscription).  Here is a sample sh script to which we give the filename 
upp.launch:

#! /bin/sh

. /usr/local/etc/setups.sh

setup upd

upp /path/to/upp.subscription

data_dir = /var/adm/upp Use /var/adm/upp as the local bookkeeping 
directory

newprod_notify = T T is for True; this means yes, notify me of new prod-
ucts appearing on the UPD server node (in this case, on 
the fnkits node).  Set it to any other value (e.g., F) to 
disable this notification.

begin Begin stanza for a product.

    product = exmh Identify subscribed product as exmh (the exmh ver-
sions remain unspecified in this example, therefore act 
on all versions for the flavor specified below).  You 
must include this product identifier in the stanza.  
Optional product instance identifiers not used in this 
example include qualifiers, prod_dir (prod-
uct root directory) and chain.

    flavor = SunOS+5.5 Identify flavor of product (this is optional)

    action = current List in the following lines of this file one or more func-
tions to perform when any version of exmh of flavor 
SunOS+5.5 is chained to “current” on fnkits.  Action 
can be set to any chain name, or to the value new-
version.  Newversion means: perform the fol-
lowing functions when a new version of the product 
appears on the server.

        notify Send a notification message to joe@fnal.gov

end End stanza.  If you want to add instructions for another 
product in this same file, start a new stanza with 
begin.



Finding Information about Products on a Distribution Node 4-5

A sample crontab entry to run the upp.launch script every night at midnight might look 
like:

0 0 * * * /path/to/upp.launch

4.2  Listing Product Dependencies on a Distri-
bution Node

The command upd depend is used to return the list of dependencies for the specified 
product instance(s), as declared in the database in the distribution database.  It just performs 
ups depend (described in section 2.3 Finding a Product’s Dependencies) on the server, and 
uses the same set of options.  As usual, the fnkits node is the default, and -h <host> allows 
you to specify a different server.  This example shows several layers of dependencies:

% upd depend exmh

exmh v2_0_2 -f NULL -z /ftp/upsdb -g current

|__expect v5_25 -f SunOS+5 -z /ftp/upsdb -g current

|  |__tk v8_0_2 -f SunOS+5 -z /ftp/upsdb

|     |__tcl v8_0_2 -f SunOS+5 -z /ftp/upsdb

|__mh v6_8_3c -f SunOS+5 -z /ftp/upsdb -g current

|  |__mailtools v2_3 -f NULL -z /ftp/upsdb -g current

|__mimetools v2_7a -f SunOS+5 -z /ftp/upsdb -g current

|__glimpse v3_0a -f SunOS+5 -z /ftp/upsdb -g current

|__www v3_0 -f NULL -z /ftp/upsdb -g current

|  |__lynx v2_8_1 -f SunOS+5 -z /ftp/upsdb -g current

|__ispell v3_1b -f SunOS+5 -z /ftp/upsdb -g current

Inclusion of the -R option returns only the required dependencies; any optional ones are 
ignored:

% upd depend -R exmh

exmh v2_0_2 -f NULL -z /ftp/upsdb -g current

|__expect v5_25 -f SunOS+5 -z /ftp/upsdb -g current

|  |__tk v8_0_2 -f SunOS+5 -z /ftp/upsdb

|     |__tcl v8_0_2 -f SunOS+5 -z /ftp/upsdb

|__mh v6_8_3c -f SunOS+5 -z /ftp/upsdb -g current

|  |__mailtools v2_3 -f NULL -z /ftp/upsdb -g current

|__mimetools v2_7a -f SunOS+5 -z /ftp/upsdb -g current

Another useful option to point out is -H <flavor> which allows you to retrieve a 
dependency list for a flavor other than that of the machine you’re using.  For example, if you 
want the dependency list for an IRIX+6 version, but you issue the command from a SunOS+5 
machine, you would run the command:

% upd depend -H IRIX+6 exmh

exmh v2_0_2 -f IRIX+6 -z /ftp/upsdb -g current

|__expect v5_25 -f IRIX+5 -z /ftp/upsdb -j  -g current

|  |__tk v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__tk v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|  |__tcl v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__tcl v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__mh v6_8_3c -f IRIX+6 -z /ftp/upsdb -g current

|  |__mailtools v2_3 -f NULL -z /ftp/upsdb -g current

|__mimetools v2_7a -f IRIX+6 -z /ftp/upsdb -g current

|__glimpse v3_0a -f IRIX+6 -z /ftp/upsdb -g current



4-6 Finding Information about Products on a Distribution Node 

|__www v3_0 -f NULL -z /ftp/upsdb -g current

|  |__lynx v2_8_1 -f IRIX+6 -z /ftp/upsdb -g current

|__ispell v3_1b -f IRIX+6 -z /ftp/upsdb -g current

4.3  Information about Products in KITS

KITS is the commonly used name for the distribution database on the Computing Division’s 
central product distribution server, fnkits.fnal.gov.  In this section we describe: 

• registering your node to download products

• the permissions set on products in this database

• the directory hierarchy of the products area

4.3.1  Access Restrictions and Product Categories

The permissions/access restrictions of products in KITS depend on the category of product.  
As a product installer, you don’t generally know (or need to know) a priori what category the 
product belongs to, but if you can’t download a particular product due to access restrictions, 
the product category is probably the reason.1 The categories as defined in the UPD 
configuration for KITS are:

default The default category is the most commonly used, and is for 
regular products that are intended for distribution to FTP clients on 
registered hosts2.  The products are set to group upd, and 
group-read-only.

fermitools fermitools products are locally-developed and supported 
software packages (which are not available elsewhere, generally) 
that are made available to the public via the FermiTools program3. 
These products are world-readable, and thus accessible by any FTP 
client.

proprietary The proprietary category includes products for which 
Fermilab has a limited number of licenses.  Each proprietary 
product has its own group, and is made group-readable only to that 
group.4  To gain access, appropriate "site group" and "site gpass" 
commands must be issued by the FTP client.

1. You can download the optionlist table file to find a product’s category.  See section 
20.6.5 Flagging Special Category Products Using Optionlist. 
2. See the Product Distribution Platform Registration Request form at 
http://www.fnal.gov/cd/forms/upd_registration.html.
3. For more information on FermiTools, see http://www.fnal.gov/fermi-
tools/.
4. In general, the group name for the proprietary product is the same as the product name, 
except that all vxworks-related products share a group.



Finding Information about Products on a Distribution Node 4-7

fnalonly The fnalonly category is for products intended only for on-site 
ftp clients in the fnal.gov domain coming in through 
ftp://ftp.fnal.gov:9021/.  These products are set to 
group fnalonly, and are group-read-only.

usonly US-only (United States only) products are accessible only to U.S. 
government (.gov) and military (.mil) domains coming in 
through ftp://ftp.fnal.gov:8021/.  In general, these are 
products for which distribution to other countries is illegal.  They 
are set to group usonly, and are group-read-only.

4.3.2  Product Pathnames for FTP Access

Products are arranged (via symlinks) in several different file hierarchies to make browsing 
easier:

• The /ftp/products directory contains products organized by product name and 
version. 

• The /ftp/KITS hierarchy contains products organized by operating system.  This is 
the “old-style” hierarchy.

• The /ftp/pub hierarchy contains the FermiTools products which are available to the 
general public.

/ftp/products Area

Within FTP, cd to ftp/products (or to just products) in order to access this 
hierarchy.  Under the /ftp/products area the product tar files are organized in the 
structure: 

 <product>/<version>/<flavor>/

Product tar files are named according to this convention (intentionally missing the underscore 
between flavor and qualifiers):

 <product>_<version>_<flavor><qualifiers>.tar

Shown on two lines for better readability, the whole path is:

 /ftp/products/<product>/<version>/<flavor>/

      <product>_<version>_<flavor><qualifiers>.tar 

For example, the tar file for the product xemacs version v20_4 for SunOS+5 is maintained 
under /ftp/products at:

/ftp/products/xemacs/v20_4/SunOS+5/xemacs_v20_4_SunOS+5.tar

The product vxworks provides an example with a qualifier (68k) tacked onto the end:

/ftp/products/vxworks/v5_3c/SunOS+5/vxworks_v5_3c_SunOS+568k.tar

/ftp/KITS Area

Within FTP, cd to ftp/KITS (or to just KITS) in order to access this hierarchy.  Under 
the /ftp/KTIS area the product directories are organized in the structure: 

 <base_flavor>/<product>/<version>/<flavor>/

Here you will find links to the product tar files under the /ftp/products structure.



4-8 Finding Information about Products on a Distribution Node 

/ftp/KITS/pub Area

Within FTP, cd to ftp/KITS/pub (or to KITS/pub or just pub) in order to access 
this hierarchy.  Under the /ftp/KTIS area the product directories are organized in the 
structure: 

 <product>/<version>/

There is no directory level for flavor.  Here you will find links to product tar files under the 
/ftp/products structure.

4.4  Special Instructions for Proprietary Prod-
ucts

Some products in KITS are flagged as “proprietary” and require a group id and password for 
installation.  This allows us to distribute products in a more controlled fashion.  You don’t need 
to know ahead of time if a given product falls into this category; when you attempt to install a 
proprietary product, the system will return a message of the form (shown for the product edt):

Product edt v6_3b SunOS+5 is a proprietary product.

Before it can be installed, you need to obtain a group name and password for

it by sending a proprietary products request form to compdiv@fnal.gov

Have you obtained a group name and password? n 

Do you need a proprietary product request form? y

informational: transferred proprietary.form

        from fnkits.fnal.gov:/ftp/products/proprietarylist to

        /your/home/directory/proprietary.form

If you request the form, as shown, you will find it downloaded to your home directory in 
ASCII format for easy editing.  Fill out the form and email it to the address listed in the form.  
Another option is to fill out and submit the Web-based form at:

http://www.fnal.gov/cd/forms/proprietary_form.html

If your request is approved, you will receive email with a valid group id and password for the 
product.  You can then install the product, entering these two items when prompted (it’s best to 
cut and paste the group id and password from the email onto your terminal window to prevent 
typos1), e.g.,:

Product edt v6_3b SunOS+5 is a proprietary product.

...

Have you obtained a group name and password? y

Enter Group Name: edt

Enter Group Pass word: somepassword

informational: beginning install of edt.

1. One case in which it is particularly useful to cut and paste these items is the package 
vxworks, which has multiple proprietary parts.  Fortunately the same group id and pass-
word is used for each part, but you do need to enter it several times.



Finding Information about Products on a Distribution Node 4-9

The installation proceeds as normal from this point on.  If you enter the group id and password 
incorrectly, or if they have expired (which happens within a few days after they are sent), you 
will get an error message like the following:

...

Enter Group Name: wrong

Enter Group Pass word: wrong

informational: beginning install of edt.

ftp SITE GPASS failed: Group access request incorrect.

 

error: can’t transfer /ftp/products/edt/v6_3b/SunOS+5/edt_v6_3b_SunOS+5

         from fnkits.fnal.gov to 

        /fnal/ups/prd/edt/v6_3b/SunOS+5

If this message appears, try again to be sure the values get entered correctly.  If it really doesn’t 
work, reply to the email you received containing the group id and password, and ask to have 
the product re-opened for you.



4-10 Finding Information about Products on a Distribution Node 



Installing Products Using UPD 5-1

Chapter 5:   Installing Products Using UPD

This chapter guides you through installing products from a UPS/UPD product distribution 
node using the UPD command upd install.  UPD is the most efficient and widely-used 
product installation method on machines running UPS/UPD.  The installation parameters are 
set in the local node’s UPD configuration.  The aspects of the UPD configuration that you as a 
product installer need to be aware of are described in section 3.3 What You Need to Know 
about Your System’s UPD Configuration; the configuration file itself is described in detail in 
Chapter 31:  The UPD Configuration File.

5.1  The upd install Command

The upd install command performs the following functions:

• retrieves the specified product instance, and by default its dependencies, from a 
distribution node

• installs the product, and by default its dependencies, on the user node according to the 
local UPD configuration

• unwinds the product(s) if transferred in tar format

• declares the product, and by default its dependencies, to the database specified in the 
local UPD configuration.  You may pass options to this local database declaration.

• either resolves dependencies (if the -X option is specified) or prints to screen the 
commands you will need to issue in order to do so

5.1.1  Command Syntax

The full description of the upd install command and the options it takes can be found in 
the reference section 23.8 upd install.  The command syntax, showing some commonly used 
options, is:

% upd install [<chainFlag>] [-G "<options>"]  [-h <host>] \   
[-H <flavor>] [-q <qualifiers>] [-X] [-z <databaseList>] \ 
[<other options>] <product> [version] 



5-2 Installing Products Using UPD 

5.1.2  Passing Options to the Local ups declare Command

The -G option allows you to pass UPS options to the local ups declare command, 
which gets called internally by upd install.  It accepts multiple options.  The elements 
valid for use with -G include <product>, <version> and the following subset of the 
ups declare options:

-A <nodeList>, -c, -d, -D <origin>, -f <flavor>, -g <chainName>, -n, 
-o, -O "<flagList>", -p "<description>", -q <qualifierList>, -t, 
-z <databaseList>, -0, -1, -2, -3 

This feature is most commonly used to declare a chain to the product, e.g., the “current” chain:

% upd install -G "-c" [<other options>] <product> [<version>]

The -G construction can also be used to reset identifying information like flavor and 
qualifiers.  For example, to download the OSF1+V3 version of a product with qualifier 
oldxyz, but declare it locally as OSF1 with qualifier newxyz, use the -f (or -H), -q 
and -G options as shown:

% upd install -H OSF1+V3 -q oldxyz -G "-f OSF1 -q newxyz" \ 
[<other options>] <product> [<version>]

5.2  How UPD Selects the Database

5.2.1  Database Selection Algorithm

upd install runs ups declare on the local node to declare the product instance to a 
local database.  The local UPD configuration is always used to determine the database into 
which products must be installed/declared.  If your UPS installation includes only one 
database, that is the one into which all declarations will go (assuming that the UPD 
configuration used by that database points to it, which is generally the case).

If there are multiple databases, upd install has to determine the database for the 
declaration.  In a nutshell, it:

1) picks a starting database

 To pick the starting database, UPD first looks to see if the -z <databaseList> 
option is specified on the upd install command line.  If so, UPD picks the first 
database listed there.  If not, UPD picks the first database listed in $PRODUCTS.

2) finds the UPD configuration file to which the database points1

3) looks in this UPD configuration to see where to install and declare the product

If your local UPS/UPD installation is particularly complicated, it might be useful to verify that 
your $PRODUCTS variable includes all the databases used by the UPD configuration(s), and 
only those.  If not, it is possible to declare products into a database not listed in $PRODUCTS, 
which generally is undesirable.

1. The location of the updconfig file is set via the keyword UPD_USERCODE_DIR 
in the database’s dbconfig file.



Installing Products Using UPD 5-3

5.2.2  Database Selection for Dependencies

This works the same way as it does for the main product.  For each dependency in turn, UPD 
looks in the UPD configuration file designated by the first database it encounters.  From the 
UPD configuration, it determines the database in which to declare the dependent product, and 
where to install the product files.  (If the database already contains a declaration for the same 
instance of the product, the product does not get reinstalled/redeclared.)

5.2.3  Selecting a Database for Development or Testing

For development and/or testing purposes, it is often convenient to install products in your own 
products area and declare them in your own database, separate from the working database(s) 
on your system.  Setting up your own database is discussed in section 11.8.2 Adding a New 
Database and/or Products Area.  

If you’re working in AFS space or in an NIS cluster with its own common NFS-mounted 
database, also see TN0091 Configuring a Local UPS Database (While Still Using the 
Centrally Supported AFS database) at 
http://www.fnal.gov/docs/TN/tn0091.html., or section 12.2 Configuring a 
Local Database to Work With AFS.

Even if you’ve prepended your database path to $PRODUCTS, when you’re ready to install a 
product and declare it in your database, remember that you may need to use the -z 
<database> option in the upd install command, as discussed above.

5.3  Checklist for Installing a Product using 
UPD

The procedural list below is a full checklist for a product installation, including pre- and 
post-install checks.  The checks are not strictly necessary, the list simply provides guidelines 
for monitoring a product installation.  Having said that, it’s always a good idea to at least get a 
“snapshot” of your database before and after each product installation to aid in troubleshooting 
in the event the installation is not entirely successful.  Include options/arguments as necessary 
in the suggested commands.

1) Run upd list to verify that the desired product instance is available on the server.

2) Run upd depend to list the product’s dependencies (lists both required and optional 
by default).

3) Run upd depend -R to list only its required dependencies (compare to the upd 
depend output to determine the optional ones).

4) Run ups list to see which if any of the dependencies already exist in the local 
target database.

5) Run upd install to install the product instance and, as desired, its required and 
optional dependencies.

 When testing/troubleshooting, you might want to use the -i option to ignore errors, or 
the -v(vvv) option to produce verbose output.



5-4 Installing Products Using UPD 

6) Run ups declare -c if you want the parent product to be “current” but you did 
not include -G "-c" in upd install.

7) Run commands to resolve dependencies, if indicated in the output of the upd 
install command.

8) Run ups list for the parent product and dependencies to verify the declarations.

9) Setup the parent product and test that it works.

5.4  Examples

5.4.1  Install a Product Using Default Database

This illustrates the simplest case:  installing the current instance of a product for the best-match 
flavor of the target machine, and letting UPS determine the target database using 
$PRODUCTS.  For this example, we choose a product with no dependencies.  First, check the 
default instance on the server:

% upd list -K+ teledata

"teledata" "v1_0" "NULL" "" "current"

Check which instances already exist in the database(s) listed in $PRODUCTS:

% ups list -aK+ teledata

(if no output, then no instances)

Install the default instance.  We are not passing any arguments to the local ups declare 
command (no -G option).

% upd install teledata

informational: installed teledata v1_0.

informational: product teledata has an INSTALL_NOTE;

        you should read /export/home/t1/aheavey/upsII/products/teledata/v1_0//up

s/INSTALL_NOTE.

Read the INSTALL_NOTE file to see if you need to do anything (we’ll not document this 
part since it is product-specific).  Next, verify that the instance is now declared in 
$PRODUCTS:

% ups list -aK+ teledata

"teledata" "v1_0" "NULL" "" ""

Redeclare the instance with the current chain:

% ups declare -c teledata v1_0

Verify that the instance is now declared as current:

% ups list -aK+ teledata

"teledata" "v1_0" "NULL" "" "current"



Installing Products Using UPD 5-5

5.4.2  Install a Product, Specifying Database

Perform the installation normally, (as shown in section 5.4.1 Install a Product Using Default 
Database) but include the -z option, e.g.,:

% upd install -z $MYDB teledata [<other options>]

or

% upd install -z /path/to/my/database teledata [<other options>]

assuming $MYDB is set to /path/to/my/database.  The main product and all of its 
dependencies, if any, are installed and declared according to the UPD configuration to which 
the specified database points.

5.4.3  Install a Product and All Dependencies

By default, upd install installs the specified (parent) product and all of its dependencies.  
It checks for the presence of the dependencies as discussed in section 5.2 How UPD Selects the 
Database, and installs each as necessary, skipping over the ones already there.  Make sure that 
you include neither the -j nor the -R option on the upd install command line.  The 
use of these two options is illustrated in the following sections, 5.4.4 Install a Product and No 
Dependencies and 5.4.5 Install a Product and Required Dependencies Only.

To illustrate how UPD handles dependencies that are already installed versus those that aren’t, 
we’ll first install two of pine’s six dependencies separately, and then install pine v4_05 itself.  
We start with an empty database.  First list pine’s dependencies:

% upd depend pine

pine v4_05 -f IRIX+6 -z /ftp/upsdb -g current

|__ispell v3_1b -f IRIX+6 -z /ftp/upsdb -g current

|__ximagetools v4_0 -f NULL -z /ftp/upsdb -g current

   |__imagelibs v1_0 -f IRIX+6 -z /ftp/upsdb

   |__imagemagick v4_04 -f IRIX+6 -z /ftp/upsdb

   |__xfig v3_20 -f IRIX+6 -z /ftp/upsdb<---- already there

   |__xanim v2_70_64 -f IRIX+6 -z /ftp/upsdb

We’ll install xfig and xanim ahead of time, without specifying a chain:

% upd install xfig -H IRIX+6

% upd install xanim -H IRIX+6

Install pine and chain it to current:

% upd install pine -H IRIX+6 -G "-c"

informational: xanim v2_70_64 already exists on local node, skipping.

informational: xfig v3_20 already exists on local node, skipping.

informational: installed imagemagick v4_04.

informational: installed imagelibs v1_0.

informational: installed ximagetools v4_0.

informational: installed ispell v3_1b.

informational: installed pine v4_05.



5-6 Installing Products Using UPD 

Take a snapshot of the post-installation database:

% ups list -aK+

"imagelibs" "v1_0" "IRIX+6" "" "current"

"imagemagick" "v4_04" "IRIX+6" "" "current"

"ispell" "v3_1b" "IRIX+6" "" "current"

"pine" "v4_05" "IRIX+6" "" "current"

"xanim" "v2_70_64" "IRIX+6" "" ""

"xfig" "v3_20" "IRIX+6" "" ""

"ximagetools" "v4_0" "NULL" "" "current"

Notice that all the products are chained to current except the two that were preinstalled with no 
chain.  The installer should go ahead and declare them current, too, so that the main product 
recognizes them as dependencies1.

A second example illustrates how UPS/UPD resolves chains and discusses the effect of the 
-X, -s and -v options.  We install www version v2_7b.  First list its dependencies:

% upd depend www v2_7b

www v2_7b -f SunOS+5 -z /ftp/upsdb

|__ximagetools v4_0 -f NULL -z /ftp/upsdb -g current

|  |__imagelibs v1_0 -f SunOS+5 -z /ftp/upsdb

|  |__imagemagick v4_04 -f SunOS+5 -z /ftp/upsdb

|  |__xfig v3_20 -f SunOS+5 -z /ftp/upsdb

|  |__xanim v2_70_64 -f SunOS+5 -z /ftp/upsdb

|__xpdf v0_5 -f SunOS+5 -z /ftp/upsdb -g current

Let’s assume none of these products exists in our local database, and run the install:

% upd install www v2_7b

informational: installed xpdf v0_5.

informational: installed xanim v2_70_64.

informational: installed xfig v3_20.

informational: installed imagemagick v4_04.

informational: installed imagelibs v1_0.

informational: installed ximagetools v4_0.

informational: installed www v2_7b.

informational: product www has an INSTALL_NOTE;    you should read

 /local/ups/prd/upd/mengel/test/out_products/www/SunOS-5/v2_7b/ups/INSTALL_NOTE.

Execute the following to resolve chains: 

ups declare -f SunOS+5 -q "" -g current xpdf v0_5 

        -z /local/ups/prd/upd/mengel/test/out_ups_database

ups declare -f NULL -q "" -g current ximagetools v4_0 

        -z /local/ups/prd/upd/mengel/test/out_ups_database

If we had included the -X option, UPS/UPD would have executed these two ups 
declare commands.  If we had run it with the -s option, which just lists what the 
command would do, the output would have looked like:

informational: would have installed xpdf v0_5.

informational: would have installed xanim v2_70_64.

informational: would have installed xfig v3_20.

informational: would have installed imagemagick v4_04.

informational: would have installed imagelibs v1_0.

informational: would have installed ximagetools v4_0.

informational: would have installed www v2_7b.

upd install would have succeeded.

1. Typically dependencies are defined by chain rather than by version.



Installing Products Using UPD 5-7

If we had run it with the -v (verbose) option and -X, we would have seen (output edited for 
brevity):

informational: beginning install of xpdf.

informational: transferred /ftp/products/xpdf/v0_5/SunOS+5/xpdf_v0_5_SunOS+5

        from fnkits.fnal.gov to

        /local/ups/prd/upd/mengel/test/out_products/xpdf/SunOS-5/v0_5

informational: transferred /ftp/products/xpdf/v0_5/SunOS+5/xpdf_v0_5_SunOS+5/ups

/.

        from fnkits.fnal.gov to

        /local/ups/prd/upd/mengel/test/out_products/xpdf/SunOS-5/v0_5/ups

informational: transferred /ftp/products/xpdf/v0_5/SunOS+5/xpdf_v0_5_SunOS+5.tab

le

        from fnkits.fnal.gov:/ to

        /local/ups/prd/upd/mengel/test/out_ups_database/xpdf/v0_5.table.new

informational: ups declare succeeded

...(plus similar output for each remaining product)...

5.4.4  Install a Product and No Dependencies

Perform the installation normally (as shown in section 5.4.1 Install a Product Using Default 
Database), but include the -j option, e.g.,:

% upd install -j <product> [<version>] [<other options>]

The specified product gets installed, but none of its dependencies do.

5.4.5  Install a Product and Required Dependencies Only

In this example we’ll install the product exmh version v2_0_2, flavor IRIX+6 (the default for 
our system) and its required dependencies only.  We perform the installation normally, but 
include the -R option to specify “required dependencies only”.  First take a snapshot of the 
local database into which the product and its required dependencies will be declared:

% ups list -aK+

"imagelibs" "v1_0" "IRIX+6" "" "current"

"imagemagick" "v4_04" "IRIX+6" "" "current"

"ispell" "v3_1b" "IRIX+6" "" "current"

"pine" "v4_05" "IRIX+6" "" "current"

"xanim" "v2_70_64" "IRIX+6" "" ""

"xfig" "v3_20" "IRIX+6" "" ""

"ximagetools" "v4_0" "NULL" "" "current"

Check the full dependency list for this product:

% upd depend exmh

exmh v2_0_2 -f IRIX+6 -z /ftp/upsdb -g current

|__expect v5_25 -f IRIX+5 -z /ftp/upsdb -j  -g current

|  |__tk v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__tk v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|  |__tcl v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__tcl v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__mh v6_8_3c -f IRIX+6 -z /ftp/upsdb -g current

|  |__mailtools v2_3 -f NULL -z /ftp/upsdb -g current



5-8 Installing Products Using UPD 

|__mimetools v2_7a -f IRIX+6 -z /ftp/upsdb -g current

|__glimpse v3_0a -f IRIX+6 -z /ftp/upsdb -g current

|__www v3_0 -f NULL -z /ftp/upsdb -g current

|  |__lynx v2_8_1 -f IRIX+6 -z /ftp/upsdb -g current

|__ispell v3_1b -f IRIX+6 -z /ftp/upsdb -g current

Of these dependencies, only ispell v3_1b is already installed locally.  List the required 
dependencies:

% upd depend -R exmh

exmh v2_0_2 -f IRIX+6 -z /ftp/upsdb -g current

|__expect v5_25 -f IRIX+5 -z /ftp/upsdb -j  -g current

|  |__tk v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__tk v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|  |__tcl v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__tcl v8_0_2 -f IRIX+5 -z /ftp/upsdb -j  -g current

|__mh v6_8_3c -f IRIX+6 -z /ftp/upsdb -g current

|  |__mailtools v2_3 -f NULL -z /ftp/upsdb -g current

|__mimetools v2_7a -f IRIX+6 -z /ftp/upsdb -g current

Glimpse, www, lynx and ispell are not in this list and therefore upd install -R should 
not install them.  Install exmh (output not shown):

% upd install exmh v2_0_2 -H IRIX+6 -R

Now take a post-installation snapshot of the local database:

% ups list -aK+

"exmh" "v2_0_2" "IRIX+6" "" "current"

"expect" "v5_25" "IRIX+5" "" "current"

"imagelibs" "v1_0" "IRIX+6" "" "current"

"imagemagick" "v4_04" "IRIX+6" "" "current"

"ispell" "v3_1b" "IRIX+6" "" "current"

"mailtools" "v2_3" "NULL" "" "current"

"mh" "v6_8_3c" "IRIX+6" "" "current"

"mimetools" "v2_7a" "IRIX+6" "" "current"

"pine" "v4_05" "IRIX+6" "" "current"

"tcl" "v8_0_2" "IRIX+5" "" "current"

"tk" "v8_0_2" "IRIX+5" "" "current"

"xanim" "v2_70_64" "IRIX+6" "" ""

"xfig" "v3_20" "IRIX+6" "" ""

"ximagetools" "v4_0" "NULL" "" "current"

Notice that exmh, all of its required dependencies, and none of its optional ones are listed 
(except ispell which was already there).



Installing Products Using UPP 6-1

Chapter 6:   Installing Products Using UPP

UPP can be used for several functions as described briefly in section 1.1 Introduction to UPS, 
UPD and UPP, and in detail in Chapter 32:  The UPP Subscription File.  This chapter 
describes how to use UPP to install products.

6.1  Overview of Using UPP to Install Products

UPP requires what we call a subscription file which tells it what products to look for on a 
designated distribution node, and what functions to perform when it detects that new versions 
of these products are released there.  One of the functions UPP can perform is product 
installation.  UPP does this by running upd install (described in Chapter 5:  Installing 
Products Using UPD).  You can also instruct UPP to run ups declare commands to 
resolve dependencies as necessary when a product installation finishes.

Your job is to create a UPP subscription file and run the upp command.  To automate UPP’s 
operations, the upp command can be run periodically (for example from cron) .

6.2  Creating a UPP Subscription File

A subscription file consists of a header followed by at least one stanza.  The header includes an 
email address for notification, the distribution node to query, and other “administrative” 
information.  Each stanza has three parts:

• identification of a product or particular instances of a product

• identification of the condition(s) for which you want UPP to perform the instructions you give 
it

• a list of instructions, or functions to perform, for each condition

A stanza is bracketed by the lines begin and end.  The number of stanzas per file is not limited.  
A stanza cannot refer to multiple products, however there can be multiple stanzas for the same 
product (e.g., for treating different instances of the same product differently).



6-2 Installing Products Using UPP 

6.2.1  Create the Header

The header should look similar to this example (explanations are on the right):

6.2.2  Identify the Product

Within a stanza, the following terms can be used in matching a new or updated product 
instance: product, flavor, version, qualifiers, prod_dir (product root 
directory), and chain.  Set them to values that you want UPP to monitor on the distribution 
node.

All instances that match a given set of values will be operated on (in contrast to the standard 
UPS and UPD matching algorithms; see Chapter 26:  Product Instance Matching in UPS/UPD 
Commands).  You can specify only the product name and thereby install all instances, or 
restrict the set of instances by specifying more information.  Most of the time, you only need to 
specify product (and sometimes flavor).  An example of this part of the file is:

begin

  product = exmh

  flavor = SunOS+5.5

  ...

end

6.2.3  Trigger the Product Installation

After identifying the product instance, you need to tell UPP when to install it on your system.  
Your choices are when a new version of the product appears on the distribution node, or when 
the product on the distribution node gets chained to a value that matches your specification.  
This gets done in an action line, e.g.,

action = newversion

or

action = current

Any chain, including user-defined chains, can be specified.

file = upp This identifies the file as a UPP subscription 
file.

mail_address = joe@fnal.gov This specifies the email address to which UPP 
is to send notifications.

dist_node = fnkits.fnal.gov This specifies the product distribution node to 
contact.

data_dir = /var/adm/upp This refers to the directory where you want 
UPP to maintain bookkeeping files.

newprod_notify = T Setting newprod_notify to T (True) 
tells UPP to send notification of brand new 
products to the address in mail_address.



Installing Products Using UPP 6-3

6.2.4  Provide Instructions to UPP

At this point you’re ready to tell UPP what to do when the conditions are met.  Since this 
chapter discusses installing products, the instructions you can choose from are:

6.3  Sample Subscription File for Installing a 
Product

This sample file instructs UPP to install all the SunOS+5.5 instances of the product exmh (and 
dependencies as necessary), and to resolve the dependencies.  UPP is also instructed to send 
notification when the install is triggered.  The file contents are on the left, and explanations on 
the right:

install Install the subscribed product via upd install.

reget Short for: delete, then reinstall

resolve Run any ups declare commands as necessary to make chains 
match so that parent product and dependencies and run properly 
together.

notify Place a notice of the new product instance in the mailed output.

file = upp This identifies the file as a UPP subscription file.

mail_address = joe@fnal.gov Send mail notifications to joe@fnal.gov.

dist_node = fnkits.fnal.gov Use fnkits.fnal.gov as the UPD server 
node to contact

data_dir = /var/adm/upp Use /var/adm/upp as the bookkeeping direc-
tory

newprod_notify = T Yes (True), notify me of new products appearing 
on the UPD server node (in this case, on the fnkits 
node).

begin Begin stanza for a product.

    product = exmh Identify subscribed product as exmh (the exmh 
versions remain unspecified in this example, there-
fore act on all versions for the flavor specified 
below).

    flavor = SunOS+5.5 Identify flavor of product (this is optional)

    action = current List in the following lines one or more functions to 
perform when an instance of exmh of flavor 
SunOS+5.5 is chained to current on fnkits.

        notify Send a notification message to joe@fnal.gov



6-4 Installing Products Using UPP 

6.4  The UPP Command

The upp command line is very simple:

% upp [-v[v...]] <subscrip_file_1> [<subscrip_file_2>...]

The -v option requests verbose output; more v’s (up to four) provide progressively more 
verbosity.  The upp command has no direct output (unless verbosity is turned on), rather it 
mails a report of any actions taken to the email address specified in the subscription file.  

There are no other command options for upp; its behavior is controlled entirely by the 
subscription file(s).

6.5  Automating UPP via cron

You can add a cron job that first sets up UPD then runs UPP with a subscription file (shown 
here as upp.subscription).  Here is a sample sh script to which we give the filename 
upp.launch:

#! /bin/sh

. /usr/local/etc/setups.sh

setup upd

upp /path/to/upp.subscription

A sample crontab entry to run the upp.launch script every night at midnight might look 
like:

0 0 * * * /path/to/upp.launch

        install Install the newly current instance (and its depen-
dencies as necessary) on the local node

        resolve Determine which ups declare commands 
need to be run on the local node so that all the 
chains match up properly for the dependencies to 
work, then run the commands.

end End.  If you want to add instructions for another 
product in this same file, start a new stanza with 
“begin”.



Installing Products using FTP 7-1

Chapter 7:   Installing Products using FTP

This chapter describes how to download a product using FTP, install it, and declare it to a local 
UPS database.  Anonymous FTP is available on fnkits, and may be available on other UPS 
product distribution nodes.  FTP does not take advantage of the local node’s UPD 
configuration.  It can be used only to retrieve products; it is left to the installer to unwind and 
declare them.  Furthermore, if the table file and/or the ups directory is (are) not included the 
tar file, each must be retrieved separately.

FTP is not recommended for installations into the usual local product area; UPD is designed 
and configured specifically for this purpose and should be used instead.  FTP is more suited to 
product installations into non-standard locations on your node, e.g., into your own area for use 
just by you.

On fnkits, FTP is most useful for off-site users who want to download FermiTools products, 
which are located under the /pub directory in the KITS database.  You do not need to be a 
registered user to obtain the FermiTools products.

7.1  UPS Product Components to Download

One of the features of UPS/UPD v4 is that it allows product developers to update certain 
portions of a product without cutting an entire new release of the product.1  Specifically, a 
developer can update any file within a product’s ups directory and reissue the ups 
directory tar file, and/or update and reissue a product's table file independently of the product 
tar file.  The disadvantage this feature presents is that you must download these elements 
separately when using FTP to install a product.

The files that are commonly found within a product's ups directory include: 

• a README file which provides information about the product such as origin, developer, 
support level, and so on

• unformatted man pages (under ups/toman/man) 

• formatted man pages (under ups/toman/catman) 

• an INSTALL_NOTE file, when needed, with instructions for installers

• (sometimes) a table file2

1. In versions of UPS/UPD prior to v4, KITS contained one tar file per product. If any-
thing in the product changed, it required adding a brand new tar file of the whole product 
to KITS. 
2. Since the table file may get updated separately from the other ups directory files, the 
copy maintained in the ups directory is not always the most recent one.



7-2 Installing Products using FTP 

7.2  Installing Products from fnkits.fnal.gov

First, verify that your node is registered to obtain products from fnkits.  If not, complete the 
product distribution registration form at 
http://www.fnal.gov/cd/forms/upd_registration.html.  

If you only want to access FermiTools products (which includes all products located under the 
/pub directory), registration is not required.

The naming conventions and file hierarchy on fnkits have been constructed to make finding 
and downloading product files relatively easy.  We show the procedure by way of an example, 
using the (fictional) product sister, version v1_0, for flavor Linux+2.  For the local database 
we use /fnal/ups/db and we take the local product area to be 
/fnal/ups/products.

7.2.1  Download the Files from fnkits

In order to download the product files from the server, first change to an appropriate directory 
and run FTP to the machine, e.g.,:

% cd /usr/tmp

% ftp fnkits.fnal.gov

Provide the username anonymous, and use your <username>@<nodename> as the password.

Once you’re logged on, you need to find the product you want.  If you know the product’s 
name, version, and flavor, you can just cd to the appropriate directory.  If not, you may need 
to browse a bit.  The product pathnames are listed in section 4.3.2 Product Pathnames for FTP 
Access.  Products are arranged (via symlinks) in several different file hierarchies to make 
browsing easier:

• The /products directory contains products organized by product name and version. 

• The /KITS hierarchy contains products organized by operating system. 

• The /pub hierarchy contains the FermiTools products which are available to the 
general public. 

We want to install the product sister version 1_0 for the flavor Linux+2, so we cd to the 
appropriate directory under /products and list the directory contents (this shows typical 
contents for products on fnkits):

ftp> cd /products/sister/v1_0/Linux+2

ftp> ls -l

drwxr-xr-x   4 100      kits         512 Sep 10 19:53 sister_v0_1_Linux+2

-rw-rw-r-x   1 100      kits        1538 Sep 10 19:53 sister_v0_1_Linux+2.table

-rw-r--r-x   1 100      kits     9687040 Aug 19 21:05 sister_v0_1_Linux+2.tar

-rw-rw-r-x   1 100      kits       60928 Sep 10 19:53 sister_v0_1_Linux+2.ups.tar

The directory sister_v0_1_Linux+2 contains the unwound ups directory files (to 
allow you to browse, read and/or download individually any of the files it contains). 
sister_v0_1_Linux+2.table is the table file, sister_v0_1_Linux+2.tar is 
the complete product tar file, and sister_v0_1_Linux+2.ups.tar is a separate tar 
file of the ups directory.



Installing Products using FTP 7-3

Set the mode to “binary”, and get the two tar files:

ftp> binary

ftp> get sister_v0_1_Linux+2.tar

ftp> get sister_v0_1_Linux+2.ups.tar

Then set the mode to “ascii”, and get the table file:

ftp> ascii

ftp> get sister_v0_1_Linux+2.table

and exit:

ftp> bye

7.2.2  Unwind the Files into your Products Area

You need to unwind/copy the product files on your local node in the right order to ensure that:

•  the individually-downloaded table file takes precedence over any previously existing 
table file as well as over one which may be contained within the product tar file

• the product's ups.tar file contents take precedence over any previously existing 
ups directory contents as well as over that which is contained within the product tar 
file.

This involves first unwinding the product tar file, then the ups directory, and finally copying 
the table file to its correct location.  This procedure is illustrated below.

Note:  From a technical standpoint, you are not required to follow any file naming/location 
conventions laid out in your system's updconfig file, if any, since you are not using UPD 
for the installation.

First make the product root directory:

% cd /fnal/ups/products

% mkdir -p sister/v0_1/Linux+2

Change to the product root directory and unwind the product tar file:

% cd sister/v0_1/Linux+2

% tar xvf /usr/tmp/sister_v0_1_Linux+2.tar

Now change to the product's ups directory (or make one if it doesn't exist) and unwind the 
product's ups.tar tar file:

% cd ups

% tar xvf /usr/tmp/sister_v0_1_Linux+2.ups.tar

Finally, change to the directory in which you want to put the table file and copy it in.  Here we 
use the product directory under the database (the other commonly used location is under the 
product's ups directory).

% cd /fnal/ups/db/sister

% cp /usr/tmp/sister_v0_1_Linux+2.table ./sister.table



7-4 Installing Products using FTP 

7.2.3  Declare the Product to your Database

You now need to declare the product instance to your UPS database1.  Declaring a product 
instance is described in section 3.4 Declaring an Instance Manually.

To declare the downloaded product sister to our /fnal/ups/db database, we run the ups 
declare command as follows:

% ups declare sister v0_1 -f Linux+2 -z /fnal/ups/db \         
-r /fnal/ups/products/sister/v0_1/Linux+2  \                              
-m sister.table

The -U and -M options are not included since we put the table file and ups directory in 
default locations where UPS will find them.

7.3  Installing Products from Other Product 
Distribution Nodes

The procedure for downloading from any standard UPS product distribution node is basically 
the same as illustrated for fnkits in section 7.2 Installing Products from fnkits.fnal.gov.  The 
UPD configuration of the server node will most likely be different however, which means that 
the product and its associated files may be organized differently than on fnkits.  You may need 
to verify that your node is registered to obtain products from the server.  Contact the server 
maintainer or other designated person for information regarding node/user registration.

7.3.1  Locate the Product Files on the Server

The most reliable way to determine the location of the product files is to use the upd list 
command, e.g.,: 

% upd list -h <hostname> -K+:@prod_dir:@ups_dir:@table_file  \ 
sister v0_1 -f Linux+2

(We show the output on separate lines for readability:)

"/P/tar/sisterv0_1Linux+2.tar" 

"/P/ups/sisterv0_1Linux+2.ups.tar"  

"/P/table/sisterv0_1Linux+2.table"

In this example, files are organized on the server by type rather than by product:

• product tar files are stored under the /P/tar hierarchy

• product ups directory tar files are stored under the /P/ups hierarchy

• table files are stored under the /P/table directory. 

1. ... unless you’re not running UPS on your local node.



Installing Products using FTP 7-5

7.3.2  Download the Files from the Server

Let’s take special.upd.host as our server node.  In order to download the product files from the 
server, first change to an appropriate directory and run FTP to the machine, e.g.,:

% cd /usr/tmp

% ftp special.upd.host

Provide the username anonymous, and use your <username>@<nodename> as the password.  

Once you’re logged on, set the mode to “binary”, and get the two tar files:

ftp> binary

ftp> cd /P/tar

ftp> get sister_v0_1_Linux+2.tar

ftp> cd /P/ups

ftp> get sister_v0_1_Linux+2.ups.tar

Then set the mode to “ascii”, and get the table file:

ftp> ascii

ftp> cd /P/table

ftp> get sister_v0_1_Linux+2.table

and exit:

ftp> bye

7.3.3  Unwind the Files into your Products Area

Unwind the tar files and copy the table file as shown in section 7.2.2 Unwind the Files into 
your Products Area.

7.3.4  Declare the Product to your Database

Declare them as shown in section 7.2.3 Declare the Product to your Database.



7-6 Installing Products using FTP 



Product Installation: Special Cases 8-1

Chapter 8:   Product Installation: Special Cases

This chapter provides product installation information about specific cases.  It discusses:

• how to install products requiring special privileges

• how to install into a local products area using the installation of UPD in AFS space

• how to install products into the AFS-space UPS products area

8.1  Installing Products that Require Special 
Privileges

Certain products supplied by the Computing Division need “special configuration” which can 
only be performed by a suitably privileged account.  This is described in TN0092 What does 
‘InstallAsRoot’ Really Mean?.  The text here is adapted from that document. 

For these particular products, listed below, at some point during the installation process you 
will be prompted to login as root and run the command1:

% ups installasroot <product> <version> [<options>]

This command would then proceed to run the privileged installation actions.  The 
INSTALL_NOTE file should provide instructions for you if this is necessary.  

Examples of products requiring configuration by a privileged account include: 

python, perl require that files and symlinks be created in /usr/local/bin 
for the convenience of users and system administrators (so that perl 
and python are always accessible, even if not previously setup). 

tcsh, bash require that files be copied to /usr/local/bin with proper 
permissions and ownership (for security reasons) 

ssh requires that configuration files and binaries be copied to system 
areas 

1. By convention, the products’ table files generally contain an installAsRoot action, 
which gets executed via this command.  For particularly complicated products, the instal-
lAsRoot action my point to other developer-defined actions, and you may be instructed to 
run one or more customized commands instead of ups installasroot.



8-2 Product Installation: Special Cases 

kerberos requires that configuration files and binaries be copied to system 
areas; also requires suid on certain files under the product area 
$KERBEROS_DIR itself. 

systools requires that suid permissions be set on various cmd plug-in scripts 
under the $PRODUCTS area. 

On many systems, /usr/local and/or the $PRODUCTS area are NFS-mounted.  For 
security reasons, these areas may not in fact be writable by the root account on the node where 
the product installation is taking place.

Note that in AFS file systems, root access is usually insufficient to guarantee write access. At 
present, however, there are no products known to require an admin token for their 
installAsRoot actions. 

If you are instructed to issue a special installation command, e.g.,: 

% ups installAsRoot <product> <version>

assume that you need full write access to the following locations: 

/usr/local Scripting languages, local utilities, and certain security tools will 
require symlinks and/or files under /usr/local/bin (or 
/usr/local/etc).  Bear in mind that in a mixed-platform 
cluster, /usr/local will typically comprise a set of directories, 
one for each type of system. 

$PRODUCTS More accurately, root may need to write/modify configuration 
and/or log files under the area where products are installed.  This is 
determined by the system’s UPD configuration, usually found in the 
file $PRODUCTS/.updfiles/updconfig. 

local system disk Security tools, system administration tools, web servers, and so on, 
may need to write configuration files into system areas such as 
/etc and /var. 

If access to other areas is required, it should be noted in the product’s INSTALL_NOTE file.  
The steps to take in order to ensure that areas listed above are writable will vary depending on 
the particular configuration of each system, and are left to the system administrator.

For some older versions of products, a symbolic link gets created in 
/usr/local/products whenever a new instance is declared to the database.  These 
products will need to be configured on each machine with a unique /usr/local area.  This 
packaging philosophy has been phased out. 

8.2  Installing Locally Using UPD from 
AFS-Space

Systems running AFS can be configured to provide access both to locally installed/declared 
products and to products in AFS space without maintaining UPS/UPD in the local database.  
This configuration is described in section 12.2 Configuring a Local Database to Work With 
AFS.  



Product Installation: Special Cases 8-3

The local database is usually given a standard name in common use at Fermilab:

/fnal/ups/db standard for several product server bootstrap 
configurations

/local/ups/ standard for Fermi RedHat Linux

/usr/products/ another popular naming convention

/usr/products/CMSUN1/ naming convention for CMS local databases

The database must point to a local UPD configuration file with appropriate product location 
definitions.

With no locally installed UPS/UPD, you’ll need to invoke the AFS installation of UPD to 
install a product into the local products area.  If the first or only database listed in 
$PRODUCTS that contains UPD is the AFS database, then you need no database specifier in 
the setup command.  Run it normally:

% setup upd

Assuming that $PRODUCTS lists your local database first, you can run upd install 
without any database option and your product will go into the local database (assuming the 
UPD configuration is set accordingly).  If $PRODUCTS doesn’t list yours first, include the 
-z option in the upd install command, e.g.,:

% upd install -z /path/to/local/db <product> <version> ...

In terms of where they get installed and declared, dependencies are treated the same as the 
main product.  If you want to install and declare only the main product locally (e.g., for 
development) but you want to keep all of its dependencies in AFS space, use the syntax: 

% upd install -j [-z /path/to/local/db] <product> <version> ...

to install only the main product.  Then, as needed, install the dependencies in AFS-space; see 
section 8.3 Installing Products into AFS Space.

8.3  Installing Products into AFS Space

8.3.1  Overview

A single AFS volume is intended to contain instances for all flavors of a particular UPS 
product-version combination.  For each product, there is a read/write volume into which the 
product must be installed:

/afs/.fnal.gov/ups/<product>/<version>

(note the dot preceding fnal).  There is a process called releasing a volume which replicates 
the read/write product volume into read-only clones.  Replication avoids any single point of 
failure for a product and provides more robust service.  Multiple frozen read-only copies of the 
product areas are kept on several AFS server machines.  We want users running setup to 
access these redundant, read-only volumes of products.  Otherwise, the benefit of cloning is 
wasted.  A product must therefore be declared to UPS via its read-only pathname (notice the 
absence of a dot preceding fnal):

/afs/fnal.gov/ups/<product>/<version>



8-4 Product Installation: Special Cases 

The AFS-space updconfig file is configured to unwind products into the read/write area 
(via the UNWIND_PROD_DIR definition), and then release them to the read-only volumes, 
using the upd_volrelease script (via the PREDECLARE action).  As the action name 
suggests, this happens before declaring the product.  When ups declare gets called, the 
PROD_DIR_PREFIX in the AFS-space dbconfig file ensures that the read-only pathname 
gets declared.

Installations into AFS space should be made from one of the interactive nodes of the fnalu 
cluster, preferably a SunOS node.1  The fnalu nodes have the arcd daemon running and supply 
the upd_volrelease script, both of which are required for AFS installations.  
fsui02.fnal.gov is the machine on which it works most consistently.  If you need to use a 
non-SunOS node, use upd install -H <target_flavor> to set the flavor.  The 
userid products and the groups uas and upsdatabase are allowed to install into AFS space.

8.3.2  Request a Product Volume

Only AFS administrators are allowed to create product volumes.  To request a product volume, 
contact Customer Support at helpdesk@fnal.gov.  Customer Support will forward the message 
appropriately.  Recall that all the instances for the different flavors of a particular 
product-version pair go into a single AFS volume.  Your request needs to include:

• the product name

• the product version

• the combined size of the various instances that will go into the volume

• the AFS user and group(s) who need write access

An AFS administrator will create a volume writable by you (the requestor) and your group, and 
notify you when it’s ready.  The product instances can be installed in the volume as soon as it is 
created.

8.3.3  Install your Product

Install each instance of your product (all of the same version) using the upd install 
command (documented in Chapter 5:  Installing Products Using UPD).  Specify the read-only path 
for the database as shown here:

% upd install -z /afs/fnal.gov/ups/db <product> <version> \    
-f <flavor> [-q <qualifierList>] ...

1. On some AFS nodes the upd_volrelease script is missing from 
/usr/local/bin, and on others the setup work for it has not been completed.



Product Installation: Special Cases 8-5

8.3.4  Post-Installation Steps

Configure/Tailor the Product

Because the product areas as declared in AFS space are read-only, if your product requires 
configuration or tailoring, you must execute these commands using the read/write path name, 
e.g.,:

% ups configure -r /afs/.fnal.gov/... <product> <version> \    
-f <flavor>...

% ups tailor -r /afs/.fnal.gov/... <product> <version> \       
-f <flavor> ...

For some products, notably perl and python, the configure script/action checks for /afs/ 
and makes the appropriate path change, e.g.,:

DEST_DIR=`echo $UPS_PROD_DIR | sed -e ‘s;/afs/fnal.gov;/afs/.fnal.gov;’`

Create Symbolic Links

If the product needs the ability to write into any areas under its product root directory during 
normal use, then you need to symbolically link these areas.  If the area must be shared, link to 
the read/write area.  If not, you can link to some area on non-AFS writable disk (e.g., under 
/tmp or /var).

For example, say the product fred in AFS space needs to write into $FRED_DIR/log 
which is read-only.  Go into the read/write $FRED_DIR area, remove the log directory and 
create a link for the area in which to write (e.g., /var/tmp/fred) in the read-write area, 
e.g.,:

% ln -s /var/tmp/fred /afs/.fnal.gov/ups/fred/v1_0/SunOS/log

You will then need to release the volume, as described below.  Your read-only replicas will 
contain the link.

If links are made to a non-AFS writable disk, check the SETUP action in the product’s table 
file; it should ensure that the specified area exists at product setup.  E.g., if linking to 
/var/tmp/fred:

Action = setup

...

Execute( test -d /var/tmp/fred || (mkdir /var/tmp/fred; 

         chmod 777 /var/tmp/fred), NO_UPS_ENV) (all on one line in real file)

Rerun the Volume Release

If you have configured and/or tailored the product, or if you have added symbolic links, you 
need to manually rerun the upd_volrelease script to re-release the product volume, 
e.g.,:

$ upd_volrelease /afs/.fnal.gov/ups/<product>/<version>

unless the product's actions already take this into account (look for upd_volrelease calls 
in the table file’s CONFIGURE action).

Note that it doesn't hurt to re-release a product volume several times in a row, so if you're not 
sure, just rerun it.

To save time, configure and/or tailor all the flavors of your product version first, and then run 
the upd_volrelease command once at the end.



8-6 Product Installation: Special Cases 



Troubleshooting UPS Product Installations 9-1

Chapter 9:   Troubleshooting UPS Product 

Installations

This chapter provides a few hints if things don’t seem to work after installing a product.

• If you don’t find a product that you expect to see on the FTP server, it could be that the 
product is flagged as belonging to a special category to which you don’t have access 
(e.g., site-only and U.S.-only are two of the categories used on fnkits; see section 21.3.2 
The Recognized Product Categories).  You may need to try with a different userid.  It is 
also possible, if not terribly likely, that the file’s permissions are set incorrectly on the 
server.

• If the $PATH goes away, restore it by running:

 % setup setpath

 and check if the pathSet function is used in the table file -- if it is set wrong, this 
may be the cause.

• To print out diagnostic information about what might be wrong with the installation, run 
ups verify:  

 % ups verify -a <product> [<version>]

• Try setting up just the main product and none of its dependencies.  This should help 
determine which file has the problem, the main one or a dependency.  Use -j in the 
setup command:

 % setup -j <product>

• Print out verbose information using the -v option with setup:

 % setup -v <product>

 To get progressively more information, use multiple v’s, e.g., -vv, -vvv (up to four).

• Check file permissions.  Any scripts called by the table file must be both readable and 
executable.  The product executable(s) must of course be executable.  The product 
database files must be readable.

• To examine the temporary file that the setup command creates and sources, run the 
command:

 % ups setup <product> [<version>]

 This returns the path of this temporary file, and you can then go look at the file.  For 
example:

 % ups setup ocs

     /var/tmp/aaaa00273

• For most UPS commands, the -s option can be used to simulate the command (i.e., 
create the temporary file) without executing it.  It also returns the path of the temporary 
file it created, for example:

 % setup -s -z /products/ups_database/upsII/main xpdf

  INFORMATIONAL: Name of created temp file is /var/tmp/aaaa005Mt



9-2 Troubleshooting UPS Product Installations 

• If home directories move or if older versions of products have been deleted, you might 
want to prevent execution of unsetup files prior to a subsequent setup.  In this case, don’t 
unsetup the product.  Just setup the product again using -k:

 % setup -k <product>



System Administrator’s Guide III-1

Part III   System Administrator’s Guide

Chapter 10:  Maintaining a UPS Database

In this chapter we assume that you have UPS/UPD installed and that you 
have a working database and products area.  We provide instructions and 
examples for performing the following functions:

• declaring product instances to a database

• declaring, removing and changing chains

• removing product instances

• verifying the integrity of a product instance

• modifying information in a database file

• determining if a product needs to be updated

• updating a table file or ups directory

• retrieving an individual file from a distribution node

• checking product accessibility

• troubleshooting

Chapter 11:  UPS and UPD Pre-install Issues and General Admin-
istration

In this chapter we take a step back with regard to Chapter 10:  Maintaining a 
UPS Database, and assume that you have not yet installed UPS/UPD, or 
created a UPS database and products area.  We guide you through the 
administrative decisions and tasks that are involved in preparing to 
implement UPS/UPD.  Towards the end of the chapter there is also some 
information regarding general administrative tasks.  For machines running 
AFS or NFS, also see Chapter 12:  Providing Access to AFS Products.

Chapter 12:  Providing Access to AFS Products

This chapter describes how to provide access on your local machine to UPS 
products installed in AFS space.

Chapter 13:  Bootstrapping CoreFUE

CoreFUE is a bundled product which includes UPS/UPD and perl.  It refers 
to the core components of the Fermi UNIX Environment (FUE).  When we 
discuss installing UPS/UPD, we’re generally talking about coreFUE since 
perl is a required component.  Here we describe how to use automated 



III-2 System Administrator’s Guide 

scripts to bootstrap coreFUE, that is, to install coreFUE on a machine on which no prior 
versions of these products are installed.  Several project-specific configurations of UPS/UPD 
are available.

Chapter 14:  Automatic UPS Product Startup and Shutdown

This chapter covers configuring your system to support automatic startup and shutdown of 
UPS products, and installing individual UPS product instances to start and stop automatically.  



Maintaining a UPS Database 10-1

Chapter 10:   Maintaining a UPS Database

In this chapter we assume that you have UPS/UPD installed and that you have a working 
database and products area.  We provide instructions and examples for performing the 
following functions:

• declaring product instances to a database

• declaring, removing and changing chains

• removing product instances

• verifying the integrity of a product instance

• modifying information in a database file

• determining if a product needs to be updated

• updating a table file or ups directory

• retrieving an individual file from a distribution node

• checking product accessibility

• troubleshooting

To get command usage information or on-line help, use the following resources:

• Refer to Part VI of this guide (in GU0014A), Command Reference, especially Chapter 
22:  UPS Command Reference.

• Run the command with "-?", e.g., ups declare "-?"1.  

• Man pages are also provided; use an underscore with the UPS command when running 
man, e.g., man ups_declare.

10.1  Declare an Instance

A product instance must exist on the system before it can be declared to a UPS database2.  
Product declaration is done with the ups declare command.  Declaring a product 
instance makes it known to UPS, and therefore retrievable within the UPS framework.  
Normally products are installed on user nodes using the upd install command which, in 
addition to downloading and installing the product, runs ups declare to make the initial 
declaration of the product to the local UPS database.  If you use FTP to download a product, 
then you’ll need to declare it manually.  Refer to Chapter 7:  Installing Products using FTP for 
details about installing with FTP.  

1. The double quotes are necessary for C shell users; -? is interpreted by sh.
2. At least a rudimentary root directory hierarchy for the product, its table file directory 
and table file must exist before declaration.



10-2 Maintaining a UPS Database 

If you use upd install and you have more than one database, refer to section 5.2 How 
UPD Selects the Database to see how UPD determines the database for the declaration.

10.1.1  The ups declare Command

Before declaring, make sure the product is unwound into in its final location.  Also make sure 
that you’ve downloaded the table file and installed it in an appropriate directory.  For an initial 
declaration you must specify at a minimum:  the product name, product version, product root 
directory, flavor and table file name1.   

The full command description and option list is in the reference section 22.5 ups declare.  Here 
we show commonly used command options (see the notes regarding -z, -U and -M which 
follow):

% ups declare <product> <version> -r /path/to/prod/root/dir/ \      
-f <flavor> [-z /path/to/database] [-U /path/to/ups/dir] \       
[-m <table_name>.table] [-M /path/to/table/file/dir] \ 
[<chainFlag>]

1) If the database is not specified using -z, UPS declares the product into the first listed 
database in $PRODUCTS (see section 26.1 Database Selection Algorithm for more 
information).

2) If the product's ups directory tar file was unwound in the default location      
($<PRODUCT>_DIR/ups), then -U /path/to/ups/dir is not needed.  If the 
ups directory is located elsewhere (or named differently), this specification must be 
included.  If specified as a relative path, it is taken as relative to the product root 
directory.

3) If the product's table file was placed in either of the two default locations (under 
/path/to/database/<product>/ or in the product's ups directory), then 
-M /path/to/table/file/dir is not needed.  Only use the -M option if you 
have moved the table file to a separate location where UPS won't otherwise find it.  If 
specified as a relative path, it is taken as relative to the product root directory.  See 
section 28.4 Determination of ups Directory and Table File Locations for details on 
how UPS finds the table file.

Unless the product you’re declaring has no table file (true for very few products), make sure its 
location gets declared properly, either explicitly or by default.  Otherwise, users will need to 
specify its name and location on the command line every time they want to run or operate on 
the product.  If it is neither declared nor specified on the command line, UPS/UPD assumes 
there is no table file.

You can opt to declare a chain to the product instance at this time or in a later declaration.  To 
declare a chain, include the appropriate chain flag in the command (see section 1.3.5 Chains 
for a listing).  This is described in section 10.2 Declare a Chain.

10.1.2  Examples

Additional examples are included in the reference section 22.5 ups declare.

1. Two exceptions:  (1) if the product consists only of a table file that sets up a list of 
dependencies, there is no product root directory; and (2) if the product has no table file 
(very rare) then there is no table file name.



Maintaining a UPS Database 10-3

Declaration of New Product to Non-default Database

The following command shows a fairly typical product declaration.  We’ll install a product 
called histo v4_0 onto a SunOS+5 node.  We assume the product instance’s ups directory is 
maintained under its product root directory, and that it contains the table file.  We include the 
-z option to indicate that we want to override the default database selection.  This is the first 
instance of this product to be declared to this database, therefore the ups declare 
command automatically creates the appropriate product directory under the specified database:

% ups declare histo v4_0 -f SunOS+5 -m histo.table -z $MY_DB -r\ 
/path/to/products/SunOS+5/histo/v4_0

We can run a ups list -l command to see all the declaration information (include -a 
because it’s not yet declared current):

% ups list -alz $MY_DB histo

DATABASE=/path/to/ups_database/declared

        Product=histo   Version=v4_0    Flavor=SunOS+5

                Qualifiers=""   Chain=""

                Declared="1998-04-17 22.08.30 GMT"

                Declarer="aheavey"

                Modified="1998-04-17 22.08.30 GMT"

                Modifier="aheavey"

                Home=/path/to/products/SunOS+5/histo/v4_0

                No Compile Directive

                Authorized, Nodes=*

                UPS_Dir="ups"

                Table_Dir=""

                Table_File="v4_0.table"

                Archive_File=""

                Description=""

                Action=setup

                        prodDir()

                        setupEnv()

                        addalias(histo,${UPS_PROD_DIR}/bin/histo)

                        addalias(hsdir,${UPS_PROD_DIR}/bin/hsdir)

                        envSet(HISTO_INC,${UPS_PROD_DIR}/include)

Declaration of Additional Instance of a Product

In the following example we declare an additional instance of histo, of the same version, but 
for the flavor IRIX+5.  Again the table file resides under the product root directory’s ups 
subdirectory, and we override the default database.  This time we declare it with the chain 
“test” (-t):

% ups declare histo v4_0 -tf IRIX+5 -m histo.table -z $MY_DB -r\ 
/path/to/products/IRIX+5/histo/v4_0



10-4 Maintaining a UPS Database 

Running a ups list -a to see what the database now contains for this product, we find:

% ups list -az $MY_DB histo

DATABASE=/path/to/ups_database/declared

        Product=histo   Version=v4_0    Flavor=SunOS+5

                Qualifiers=""   Chain=""

        Product=histo   Version=v4_0    Flavor=IRIX+5

                Qualifiers=""   Chain=test

Declaration with Table File Located in Database

Depending on your configuration, you may want the table file to reside in the product’s 
subdirectory under the database (e.g., $PRODUCTS/<product>/<table_file>).

A table file for the product must be placed in its permanent location before the instance is 
declared to the database.  Therefore, if you are declaring the first instance of a product to the 
database, you need to manually create the product directory under the database and copy the 
table file into it before declaring the instance.

You still do not need to specify the table file location (-M option) on the ups declare 
command line; UPS will find it here.

10.2  Declare a Chain

Chains are described briefly in section 1.3.5 Chains, and in detail in Chapter 29:  Chain Files.  
A chain can be declared when the product instance is initially declared to the database (see 
section 10.1 Declare an Instance), or at a later time.

10.2.1  The ups declare Command with Chain Specifica-
tion

To add a chain to a product instance, use the ups declare command with a chainFlag 
option.  The chainFlag option can be one of the standard ones:  -c, -d, -n, -o, or -t.  
chainFlag can also be replaced by -g chainName, where chainName is either one 
of the standard chain names,  e.g., -g current, or a user-defined one.  The full command 
description and option list is in section 22.5 ups declare. Here are some examples:

% ups declare -c [<other options>] <product> <version> 

% ups declare -g current [<other options>] <product> <version> 

% ups declare -g my_chain [<other options>] <product> <version> 

Declaring a chain is generally allowed on any node of a cluster, however if the corresponding 
chain action in the table file includes any node-specific or flavor-specific functions,1 we 
strongly recommend that you declare the chain from that node, or from a node of that flavor to 
avoid mismatches.  This should be noted in the INSTALL_NOTE file if it’s necessary.

1. Actions are described in Chapter 33:  Actions and ACTION Keyword Values, functions 
in Chapter 34:  Functions used in Actions, and table files in Chapter 35:  Table Files.



Maintaining a UPS Database 10-5

To include a chain in the initial declaration, simply add a chain option to the instance 
declaration as described in section 10.1 Declare an Instance.  To add a chain to a previously 
declared product instance, include only the options required to identify the product instance 
and the chain option, e.g.,:

% ups declare -c <product> <version> [-f <flavor>] \          
[-z <database>]

In general, this does not change any existing chain, it adds a new one.  However, if you have an 
instance already chained, and you wish to declare a new instance of a different version but the 
same flavor/qualifier pair to the same chain, the pre-existing chain will be removed 
automatically.  In other words, UPS ensures that a chain for a particular flavor/qualifier pair is 
unique.

A couple of examples will help to clarify how this works.  In these examples we assume that 
the product instance has previously been declared to the database either with no chain or with a 
different chain.  Some of these commands will also work for declaring an instance initially to 
the database with a chain, however we refer you to section 10.1 Declare an Instance for 
examples specific to that operation.

10.2.2  Examples

Declare an Instance to the Database as test

In a typical situation, a product instance is initially declared as test (-t) to the default database, 
to be made current at a later date.  In this example, we make an initial declaration as “test” of 
the product histo version v4_0, flavor IRIX+5, located in 
/usr/products/IRIX+5/histo/v4_0, with the table file name v4_0.table:

% ups declare -tr /usr/products/IRIX+5/histo/v4_0 -f IRIX+5 \ 
-m v4_0.table histo v4_0

We verify the declaration using ups list -l -a:

% ups list -la histo -f IRIX+5

DATABASE=/path/to/ups_database/declared

        Product=histo   Version=v4_0    Flavor=IRIX+5

                Qualifiers=""   Chains=test

                Declared="1998-04-17 22.27.16 GMT:1998-04-17 22.27.16 GMT:1998-

                Declarer="aheavey:aheavey"

                Modified="1998-04-17 22.27.16 GMT:1998-04-17 22.27.16 GMT:1998-

                Modifier="aheavey:aheavey"

                Home=/path/to/products/IRIX+5/histo/0

                No Compile Directive

                Authorized, Nodes=*

                UPS_Dir="ups"

                Table_Dir=""

                Table_File="v4_0.table"

                Archive_File=""

                Description=""

                Action=setup

                        prodDir()

                        setupEnv()

                        addalias(histo,${UPS_PROD_DIR}/bin/histo)

                        addalias(hsdir,${UPS_PROD_DIR}/bin/hsdir)

                        envSet(HISTO_INC,${UPS_PROD_DIR}/include) 



10-6 Maintaining a UPS Database 

Notice that DECLARED, DECLARER, MODIFIED and MODIFIER all have two values.  
The first value is for the declaration to the database, the second is for the test chain declaration.  
In the following example, you will see that these fields acquire a third value when the chain is 
changed.

Change instance from test to current

Once testing is complete and successful, you will want to take the product instance out of test 
and declare it as current.  For the product instance of the previous example, we issue the 
command:

% ups declare -c histo v4_0 -f IRIX+5

This adds the current chain, but it does not remove or modify the test chain.  (To remove the 
test chain, see the instructions in section 10.3 Remove a Chain.)  Verify using ups list:

% ups list -a histo -f IRIX+5

        Product=histo   Version=v4_0    Flavor=IRIX+5

                Qualifiers=""   Chains=test,current 

If we use the long form, we see the additional declaration and modification userid and time 
(output edited for brevity):

% ups list -la histo -f IRIX+5

DATABASE=/path/to/ups_database/declared

        Product=histo   Version=v4_0    Flavor=IRIX+5

                Qualifiers=""   Chains=test,current

                Declared="1998-04-17 22.27.16 GMT:1998-04-17 22.27.16 GMT:1998-04-18 

22.00.16 GMT

                Declarer="aheavey:aheavey:aheavey"

                Modified="1998-04-17 22.27.16 GMT:1998-04-17 22.27.16 GMT:1998-04-18

 22.00.16 GMT

                Modifier="aheavey:aheavey:aheavey" 

                ...

Change current Chain to Point to a New Instance

Another frequently encountered situation is that in which you already have a version chained 
to current and you want to declare a different version of the product as current for the same 
flavor.  We’ll use the previous example histo v4_0, and declare version v4_1 as current:

% ups declare -c histo v4_1 -f IRIX+5

The previously current instance for this flavor/qualifier pair now has no current chain.  Any 
other chains it may have had (test, in this case) remain unchanged.

10.3  Remove a Chain

To remove a chain from a product instance, you can use the ups undeclare command, or 
you can simply remove the chain file, or the portion of it that relates to the instance in question.  
It is usually easier and less error-prone to use the ups undeclare command.  The full 
command description and option list is in section 22.18 ups undeclare.  



Maintaining a UPS Database 10-7

The ups undeclare command has a simple syntax for removing chains:

% ups undeclare <chainFlag> <product> [-f <flavor>] \     
[<other options>] 

Do not include the version in the command; it is incompatible with including the chain, and 
may result in removing the product declaration!  We recommend always including the -f 
<flavor> option if you have a multi-flavored database.

As an example, let’s remove the current chain from the current instance of ximagetools.  
Running ups list before and after, we should see the current chain disappear:

% ups list -K+ ximagetools

"ximagetools" "v4_0" "NULL" "" "current"

% ups undeclare -c ximagetools -f NULL

% ups list -aK+ ximagetools

"ximagetools" "v4_0" "NULL" "" ""

If multiple flavor/qualifier pairs have the same chain and thus share the chain file in question 
(in which case you must specify the flavor/qualifier information on the command line), only 
the portion of the file relating to the specified instance will get removed; the file itself will not 
be deleted.

10.4  Change a Chain

In general, changing the chain to a product instance requires removing the pre-existing chain 
(see section 10.3 Remove a Chain) and adding a new one (see section 10.2 Declare a Chain).  
There is no way to directly change a chain.

When a current instance of a product already exists, if you declare a new instance of a different 
version but of the same flavor/qualifier pair as current, the current.chain file contents 
changes to point to the new version.  This is true for any chain value, not just for current.

10.5  Undeclare and Remove an Instance

To undeclare a product instance means to remove all information pertaining to it from the UPS 
database in question.  The information that gets removed includes:

• the version file, or the portion of the version file, that pertains to the instance

• any chain files, or the portions of any chain files, that pertain to the instance

The command ups undeclare is provided for this operation.  You can opt to remove the 
actual product in the product instance’s root directory, as well, by using either the -y or -Y 
option, as described in section 10.5.1 Using ups undeclare to Remove a Product.  The ups 
undeclare command executes ups unconfigure by default (see section 3.6.1 
Configuring a Product).  The unconfigure process can be suppressed by using the -C option 
with ups undeclare, however normally you want this process to execute.  The full ups 
undeclare command description and option list is in section 22.18 ups undeclare.



10-8 Maintaining a UPS Database 

It is also possible to configure UPP to remove a product automatically.  This is discussed in 
section 10.5.3 Using UPP to Remove a Product. 

Before removing anything, you should find out if any other products have the product instance 
in question declared as a dependency.1  If so, you may want to reconsider removing it.  
Removal of the product instance may affect the operation of its parent products. 

10.5.1  Using ups undeclare to Remove a Product

To remove a product instance, you must specify the version of the instance, not its chain, in the 
ups undeclare command.  Specifying the chain removes only that chain, not the instance 
itself.

Using ups undeclare is the recommended procedure for removing product 
instances.  Removing them manually does not ensure that all the files get deleted or that 
chains get updated properly, which can lead to a fragmented products area.

If you choose to completely remove the product, and you want to delete the product instance’s 
directory tree starting from its root directory, use one of the options -y or -Y with ups 
undeclare (-y queries you for confirmation, -Y does not).  We recommend always 
including the -f option if you have a multi-flavor database.  You may also need to include 
the -z option if you have more than one database.  The command syntax is (showing 
commonly used options):

% ups undeclare [-f <flavor>] [-q <qualifierList>] [-y|Y] \   
[-z <database>] <product> <version>

Special case:  If a product has a CONFIGURE action that modifies files outside of its product 
root directory, and if this instance is used by more than one node, flavor or file system, then 
you may need to run ups undeclare or ups unconfigure on all of the nodes 
before removing the product files on any node.  The INSTALL_NOTE file should indicate if 
this is the case.  If you’re not sure, check in the product’s table file.

Example 1

In this first example, we remove the product tcl v7_6a.  We undeclare it and opt to remove the 
product root directory after query, taking a “snapshot” before and after.  First, verify the 
declared instances of tcl in the database:

% ups list -aK+ tcl

"tcl" "v8_0_2" "IRIX+5" "" "current"

"tcl" "v7_6a" "IRIX+5" "" ""

Next verify the product root directory contents (run setup to set $TCL_DIR, check contents 
of the tcl products area, and then list contents of $TCL_DIR):

% setup tcl v7_6a

% cd $TCL_DIR/../ ; ls -l

total 8

drwxrwxr-x    9 aheavey  g020         140 Sep 15 15:29 v7_6a/

drwxrwxr-x    9 aheavey  g020        4096 Sep  8 15:50 v8_0_2/

1. The ups parent command will provide this information.  The command is not 
available as of UPS version v4_5_2; it is planned for a future release.



Maintaining a UPS Database 10-9

% cd v7_6a ; ls -l

total 40

-rw-r--r--    1 aheavey  g020         165 May  1  1997 BUILD_INFO

-rw-r--r--    1 aheavey  g020        5861 May  1  1997 Makefile

drwxrwxr-x    2 aheavey  g020          83 Sep 15 15:29 alt-ups

drwxrwxr-x    2 aheavey  g020          40 Sep 15 15:29 bin

...

Now undeclare tcl v7_6a and remove its product root directory structure.  The -y option 
queries before removing, and we respond “y” for yes (one would enter “n” for no):

% ups undeclare -f IRIX+5 tcl v7_6a -y

Product home directory -

        /export/home/t1/aheavey/upsII/products/tcl/v7_6a/

Delete this directory?y

Once it finishes, verify the deletion:

% ups list -aK+ tcl

"tcl" "v8_0_2" "IRIX+5" "" "current"

% cd $TCL_DIR/../ ; ls -l

total 8

drwxrwxr-x    9 aheavey  g020        4096 Sep  8 15:50 v8_0_2

We see that the declaration was removed and the v7_6a directory is gone from the tcl 
product area.

Example 2

The following command is a dangerous example!  We include it as a caution.  It finds the best 
flavor match using the standard instance selection algorithm (see section 26.2 Instance 
Matching within Selected Database) and removes that instance of the product pine version 
v3_91 and any chains that point to it.  It also removes the product root directory for this 
instance of pine; it does not query for confirmation before doing so.

% ups undeclare -Y pine v3_91

Depending on the instances you have in your database, you may end up removing the instance 
for, say, OSF1+V3 when you really wanted to remove the one for OSF1!

10.5.2  Undoing Configuration Steps

There is a ups unconfigure command for undoing configuration steps, described in 
section 22.17 ups unconfigure.  Normally this command does not need to be run explicitly; the 
ups undeclare command undoes the reversible configuration operations by default.1  
Refer to the INSTALL_NOTE file for instructions.

1. When a product is undeclared, any steps in the table file under ACTION=UNCONFIG-
URE get executed by default, or the (reversible) functions under ACTION=CONFIGURE 
get undone.  These concepts are explained in section 33.2.2 “Uncommands” as Keyword 
Values.



10-10 Maintaining a UPS Database 

10.5.3  Using UPP to Remove a Product

It is possible to configure UPP to remove a product automatically.  To do this you must create 
or edit a subscription file for UPP, which is documented in Chapter 32:  The UPP Subscription 
File.  Within the file you identify the instance(s), set a condition to trigger its removal, and 
provide the instruction to remove it.

There are two conditions that UPP recognizes: 

• a new version of the product is available on the distribution node 

• the chain on the specified product instance changes

The appropriate instruction to use for removing a product is delete, as documented in 
section 32.2.2 Conditions and Instructions.  When the condition is met, UPP executes ups 
undeclare -Y for you (which removes the product root directory structure in addition to 
the declaration).

Here we provide a sample subscription file stanza for removing a product when its current 
chain gets removed on the server (we include the notify function in addition to delete, 
which is always a good idea): 

10.6  Verify Integrity of an Instance

The ups verify command checks the information in all the database files for the 
specified instance in order to determine if there are any errors or inconsistencies.  The full 
command description and option list is in section 22.19 ups verify.  Shown here with some 
commonly-used options, the command syntax is:

% ups verify -a <chainFlag> [-f <flavor>] <product> \ 
[<version>]

    product = exmh Identify subscribed product as exmh (the exmh versions 
remain unspecified in this example, therefore act on all ver-
sions for the flavor specified below).

    flavor = SunOS+5.5 Identify flavor of product (this is optional)

    action = uncurrent List in the following lines one or more functions to perform 
when an instance of the listed product-flavor combination is 
unchained from current on the server.

        notify Send a notification message to <userid>@fnal.gov (speci-
fied in file header)

        delete Remove the instance (declaration and product root direc-
tory) from the local node.



Maintaining a UPS Database 10-11

Here is sample output for a product for which several files and directories listed in the version 
file were not found (-a is included to match all instances):

% ups verify -a blt

DATABASE=/path/to/upsdb 

WARNING: File not found - /myman/

WARNING: File not found - /mycatman

WARNING: File not found - /myinfo/

WARNING: File not found - /myhtml/

WARNING: File not found - /mynews/

WARNING: File not found - /path/to/upsdb/.updfiles

INFORMATIONAL: Verifying product ’blt’

WARNING: File not found - /usr/products/IRIX/blt/v2_1

WARNING: File not found - /usr/products/IRIX/blt/v2_1/ups

10.7  Modify Information in a Database File

The ups modify command allows you to manually edit any of the database product files. 
It runs ups verify on the instance to perform syntax and content validation before and 
after the editing session.  The full command description and option list is in section 22.12 ups 
modify.  The command syntax with some commonly used options is:

% ups modify <product> [<version>] [-E <editor>] [<chainFlag>]\  
[-N <fileName>] [-z <database>]

ups modify performs the following steps (if you specify the file using -N, the menu will 
not appear): 

• presents menu of files that you can edit and asks you to either select one or quit

• verifies pre-modification contents of file (runs ups verify)

• starts up the editor given by -E <editor> or, if that is not specified, then $EDITOR, 
if set.  If neither is specified, it starts up vi by default.

• makes a copy of the file to be edited 

• pulls copy of file into the editor 

• after user exits the editor, runs ups verify on the edited file 

• if the validation succeeds, writes the new file over the old one and quits

• if the validation does not succeed, provides informational messages, asks if you want to 
save changes, and quits

• if no changes made to file, again presents menu of files

Sample Session with (1) Unsuccessful and (2) Successful Validation

% ups modify teledata v1_0 -N $MYDB/teledata/v1_0.version

In this example, we select the version file (via -N) for the product teledata v1_0 (default 
flavor, no qualifiers).  Since -E is not given, UPS will use the editor set in $EDITOR, or vi if 
that variable is not set.  First, UPS runs ups verify and produces the output:

Pre modification verification pass complete.

No errors were detected.  The version file is next displayed in the editor.



10-12 Maintaining a UPS Database 

1) To illustrate an unsuccessful validation, we add a bogus line:

  TESTKEYWORD = value

 and save and quit.  UPS returns the following messages, and we opt to save the 
erroneous change:

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in ’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in ’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

Post modification verification pass complete.

Do you wish to save this modification [y/n] ? y

 UPS quits, saving the file as we requested.

2) To illustrate successful validation, we’ll correct the error introduced above.  We run the 
same ups modify command.  UPS finds the error during the pre-edit validation:

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in ’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

INFORMATIONAL: Unexpected key word ’TESTKEYWORD’ in ’/home/t1/aheavey/upsII/decl

ared/teledata/v1_0.version’, line 17

Pre modification verification pass complete.

 We remove the incorrect line from the version file, then save and quit.  UPS displays the 
following message, and we elect to save the change (y):

Post modification verification pass complete.

Do you wish to save this modification [y/n] ? y

 UPS quits, saving the file as requested.

Sample Session with No Changes

In this example, we select the current instance of the product teledata, and (by default) request 
a menu of files to edit:

% ups modify teledata

[0] /home/t1/aheavey/upsII/declared/teledata/current.chain

[1] /home/t1/aheavey/upsII/declared/teledata/v1_0.version

[2] /export/home/t1/aheavey/upsII/products/teledata/v1_0//ups/v1_0.table

[3] /home/t1/aheavey/upsII/declared/.upsfiles/dbconfig

Choose file to edit [0-3] or ’q’ to quit: 1

Pre modification verification pass complete.

UPS starts up the editor and makes the selected file available to edit.  We quit without making 
any changes.  UPS displays the message:

No modifications, nothing to save.

UPS then displays the menu again, and we opt to quit:

[0] /home/t1/aheavey/upsII/declared/teledata/current.chain

[1] /home/t1/aheavey/upsII/declared/teledata/v1_0.version

[2] /export/home/t1/aheavey/upsII/products/teledata/v1_0//ups/v1_0.table

[3] /home/t1/aheavey/upsII/declared/.upsfiles/dbconfig

Choose file to edit [0-3] or ’q’ to quit: q



Maintaining a UPS Database 10-13

10.8  Determine If a Product Needs to be 
Updated

UPP can be configured on a local machine to alert users via email when a newer version of a 
product is available in KITS, or when a product instance’s table file or ups directory needs 
to be updated.  If your installation is not configured to do this, you can use UPD interactively 
to find this information.

10.8.1  Using UPP

UPP can be used for several functions as described briefly in section 1.1 Introduction to UPS, 
UPD and UPP, and in detail in Chapter 32:  The UPP Subscription File.  For instructions on 
how to configure UPP to notify you regarding a product, see Chapter 32 or 10.5.3 Using UPP 
to Remove a Product.

10.8.2  Using UPD

To determine if you need to reinstall a product, use the upd install command with the 
-s option, as shown, while logged on to a node of the flavor you wish to check (or use the -H  
option to specify a different flavor).  The full command description and option list is in the 
reference section 23.8 upd install.

% upd install -sv <product> [<version>] [-h <host>] \          
[-H <flavor>] 

If it’s ok, you’ll see no output.  If there’s a discrepancy between what’s on your node and 
what’s on fnkits (or on the host specified using -h), you’ll see output of the form:

Installing <product>

I would make directory /path/to/<product>/<flavor>/<version>

I would fetch directory <kitsflavor> from 

ftp://fnkits.fnal.gov//ftp/products/<product>/<version> as

/path/to/<product>/<flavor>/<version> now

...

Although it says “Installing”, it’s only telling you what it would have to do in order to install.

If you are interested in knowing only if the product’s table file or ups directory has been 
changed on the server and needs an update on your machine, use the upd update -s 
command.  It compares the MODIFIED dates in the remote and local nodes.  The full 
command description and option list is in the reference section 23.12 upd update.

% upd update -s <product> [<version>] <component> \              
[-H <flavor>] 

The argument <component> can take the value table_file or ups_dir, or both, 
colon-separated.  If no update is needed, there is no output.  If an update is needed, the 
messages will inform you.



10-14 Maintaining a UPS Database 

10.9  Update a Table File or ups Directory

The upd update command is used to update a product’s table file and/or ups directory.  
It operates on the specified product instance and its dependencies by default.  It retrieves the 
specified components from a distribution node and downloads them to the local node, 
overwriting the corresponding pre-existing component(s).  The full command description and 
option list are in section 23.12 upd update.  The command syntax with some commonly used 
options is:

% upd update <product> [<version>] <componentList>     \      
[-H <flavor>] [<chainFlag>] [-h <host>] [-i] [-j] 

In the following example, we overwrite the table file for the product instance xntp v3_4, flavor 
SunOS.  This operation will succeed if the MODIFIED date in the remote version file that 
points to the table file on the distribution node is later than that in the comparable local version 
file; no overwrite will occur otherwise.  Before running upd update, we compare the 
MODIFIED dates for the product by using a ups list command like the following:

% ups list -f SunOS -K MODIFIED xntp v3_4

":1998-04-01 20.08.02 GMT"

on the local node, and running upd list with similar options on the distribution node (the 
default fnkits is used here):

 % upd list -H SunOS -K MODIFIED xntp v3_4

"1998-09-10 08.13.07 GMT"

The MODIFIED date in the remote version file is later than that in the local version file, 
therefore we expect an update to occur.

Now we run the ups update command requesting the component table_file:

% upd update table_file xntp v3_4 -H SunOS

updcmd::updcmd_update - Updating xntp.

upderr::upderr_syslog - successful transfer

ftp://fnkits.fnal.gov///ftp/upsdb/xntp/v3_4SunOS.table -> /tmp/mwmdb/xntp/v3_4.table

upderr::upderr_syslog - successful ups touch xntp v3_4 -f SunOS -q "" -U ""

Rerun the ups list command to verify that the MODIFIED date changed, indicating that 
the update took place.

To update several instances of xntp v3_4 for a list of flavors, use the -H option like this:

% upd update table_file xntp v3_4 -H SunOS:IRIX:OSF1:Linux

Using -H ensures that all the dependencies are updated with the appropriate flavor rather 
than with the best match flavor to the local machine.

Note:  When updating several instances at a time, you can exclude a particular instance from 
being updated by running ups touch on it.  See the reference section 22.16 ups touch for 
more information.



Maintaining a UPS Database 10-15

10.10  Retrieve an Individual File

The upd fetch command retrieves a single file or directory maintained in a UPS 
distribution database, and downloads it to the user node, placing it relative to the current 
working directory.  The -J option is used to specify the individual filename to fetch.  If -J 
is omitted, the output is a recursive list of directories and files that are available for individual 
retrieval.  Nothing actually is retrieved when -J is omitted.  The full command description 
and option list is in section 23.6 upd fetch.  The command syntax with some commonly used 
options is:

% upd fetch [-H <flavor>] [<chainFlag>] [-h <host>] \          
[-J fileName] <product> [<version>]

First we issue the upd fetch command without the -J option to find out what files are 
available for the specified product instance (output edited for brevity):

% upd fetch -H IRIX+6.2 rbio v9_3d

Listing of table_dir [/ftp/products/rbio/v9_3d/IRIX+6.2]:

total 3172

drwxrwx---   3 updadmin upd           512 May  7  1999 rbio_v9_3d_IRIX+6.2

-rw-rw-r--   1 updadmin upd          1235 May  7  1999 rbio_v9_3d_IRIX+6.2.table

-rw-rw----   1 updadmin upd       1597440 May  7  1999 rbio_v9_3d_IRIX+6.2.tar

-rw-rw-r--   1 updadmin upd         14848 May  7  1999 rbio_v9_3d_IRIX+6.2.ups.tar

rbio_v9_3d_IRIX+6.2:

total 6

-rw-rw-r--   1 updadmin upd          1540 May  7  1999 README

drwxrwsr-x   5 updadmin upd           512 May  7  1999 ups

rbio_v9_3d_IRIX+6.2/ups:

total 28

-rw-rw-r--   1 updadmin upd           210 May  7  1999 Version

...

rbio_v9_3d_IRIX+6.2/ups/toInfo:

total 0

...

Now we use upd fetch -J to retrieve the README file listed.  The file will be copied to 
the current working directory:

% upd fetch -J README -H IRIX+6.2 rbio v9_3d

informational: transferred README

 from fnkits.fnal.gov:/ftp/products/rbio/v9_3d/IRIX+6.2/rbio_v9_3d_IRIX+6.2

 to ./README

To verify the successful transfer, we check the current working directory for the new file:

% ls -l README

-rw-rw-r--    1 aheavey  g020        1540 Sep  7 15:57 README

As another example, you can retrieve the table files for several flavors of a product.  When 
specifying the flavors on the remote node, be sure to use -H, not -f:

% upd fetch -H SunOS+5:IRIX+6:Linux+2:OSF1+V4 -J @table_file \  
tex v3_14159



10-16 Maintaining a UPS Database 

This command retrieves the table file(s) for the best match product instances of tex v3_14159 
for the listed flavor families.  Depending on how the product was configured, the same table 
file may be used for all, or they may be separate files.  The file(s) will be copied to the current 
working directory.

10.11  Check Product Accessibility

The ups exist command is used to test whether a setup command issued with the 
same command line elements is likely to succeed.  It checks for a properly declared matching 
instance, and verifies that you have the necessary permissions to create the temporary file used 
by the setup command.1  This command is rarely used from the command line, and is more 
useful in scripts where a failed setup could cause the script to abort.  The full command 
description and option list is in section 22.7 ups exist.  The command syntax with some 
commonly used options is:

% ups exist [-f <flavor>] [<chainFlag>] [-j] <product> \ 
[<version>]

When issued from the command line, it returns no output if the command succeeds.  In the C 
shell family ups exist sets the $status variable to 0 if it was able to create the temporary 
file, or to 1 for error.  In the Bourne shell family, it sets the $? variable similarly.  As an 
example, we can run ups list (not shown here) and find that there is a current instance of 
the product tex for the flavor IRIX+6 but not for IRIX+6.2.  Running ups exist for each 
flavor, we see that the variables get set accordingly.  For the C shell family:

% ups exist tex -f IRIX+6; echo $status

0

% ups exist tex -f IRIX+6.2; echo $status

1

For the Bourne shell family:

$ ups exist tex -f IRIX+6; echo $?

0

$ ups exist tex -f IRIX+6.2; echo $?

1

To run this on a product distribution node, use the corresponding command upd exist, 
documented in section 23.5 upd exist.  

1. Specifically, it determines whether setup can create the temporary file.  If so, it cre-
ates it, but it does not execute it.



Maintaining a UPS Database 10-17

10.12  Troubleshooting

This section provides a few hints if things don’t seem to work after 
declaring/removing/changing a product, or otherwise modifying files in a UPS database.

• If the $PATH goes away, restore it by running:

 % setup setpath

 and check if the pathSet function is used in the table file -- if it is set wrong, this 
may be the cause.

• To print out diagnostic information about what might be wrong with a product 
declaration, run ups verify:  

 % ups verify -a <product> [<version>]

• Try setting up just the main product and none of its dependencies.  This should help 
determine which file has the problem, the main one or a dependency.  Use -j in the 
setup command:

 % setup -j <product>

• Print out verbose information using the -v option with setup:

 % setup -v <product>

 To get progressively more information, use multiple v’s, e.g., -vv, -vvv (up to four).

• Check file permissions.  Any scripts called by the table file must be both readable and 
executable.  The product executable(s) must of course be executable.  The product 
database files must be readable.

• To examine the temporary file that the setup command creates and sources, run the 
command:

 % ups setup <product> [<version>]

 This returns the path of this temporary file, and you can then go look at the file.  For 
example:

 % ups setup ocs

     /var/tmp/aaaa00273

• For most UPS commands, the -s option can be used to simulate the command (i.e., 
create the temporary file) without executing it.  It also returns the path of the temporary 
file it created, for example:

 % setup -s -z /products/ups_database/upsII/main xpdf

  INFORMATIONAL: Name of created temp file is /var/tmp/aaaa005Mt

• If home directories move or if older versions of products have been deleted, you might 
want to prevent execution of unsetup files prior to a subsequent setup.  In this case, don’t 
unsetup the product.  Just setup the product again using -k:

 % setup -k <product>



10-18 Maintaining a UPS Database 



UPS and UPD Pre-install Issues and General Administration 11-1

Chapter 11:   UPS and UPD Pre-install Issues and 

General Administration

In this chapter we take a step back with regard to Chapter 10:  Maintaining a UPS Database, 
and assume that you have not yet installed UPS/UPD, or created a UPS database and products 
area.  We guide you through the administrative decisions and tasks that are involved in 
preparing to implement UPS/UPD.  Towards the end of the chapter there is also some 
information regarding general administrative tasks.  For machines running AFS or NFS, also 
see Chapter 12:  Providing Access to AFS Products.

11.1  Choosing Installer Accounts

Here we assume that you’re planning to implement UPS/UPD on your local system and 
maintain a UPS database and products area there1.  In this section we discuss options regarding 
installer accounts.  Choosing installer accounts wisely is important because the account used 
by the installer determines a product’s ownership.

11.1.1  Single Installer Account

For a given system, if the number of people who install products from a distribution node and 
manage the local UPS database is small and relatively static, then, from a system management 
point of view, having a single account used for these purposes is often simplest.  We suggest 
you create a standard account called products to be used for all product installations, then no 
special permissions are needed for other accounts.  This single account method prevents 
problems for any product maintainer who has to remove or change a product installed by a 
different person.  As far as the system is concerned, the installer/maintainer is always products.

11.1.2  Multiple Installer Accounts

Our experience has shown that in many situations a single installer account is not adequate.  It 
leads to confusion on systems where several people install products, especially if they don’t 
establish and follow a procedure for communicating with each other regarding product 
maintenance.  If they all use the products account, it is much more difficult to track which 
person performed a particular operation.

1. We specifically don’t say “planning to install UPS/UPD” because in some configura-
tions (notably AFS machines), you may not need to install the products locally.



11-2 UPS and UPD Pre-install Issues and General Administration 

As systems grow in size, and more and more users become product installers, we have found 
that it is better for them to use their normal login accounts when installing products.  Since 
installers need the correct group id to write to the products area (often this group is the 
products gid), system managers can simply add them to the products group.

This strategy does warrant more caution in two areas:  file system semantics and UPD 
configuration, as described in sections 11.2 Setting gids for Multiple Installer Accounts and 
11.3 File Ownership, Permissions and Access Restrictions.

11.1.3  Separate Installer Accounts for Different Product 
Categories

You might want the ownership of the product home area to be different based upon whether the 
product is being downloaded from a distribution node, or was developed on the local machine.

For example, say you have one person who installs all the products needed on your system 
from the distribution node, and several people developing UPS products locally on your 
system.  In this case, you may find it simplest to use the single installer products account for 
the downloaded products, and the developers’ own accounts for the locally-developed 
products.

11.2  Setting gids for Multiple Installer 
Accounts

When you allow multiple accounts to install products as described in section 11.1.2 Multiple 
Installer Accounts, you use group ids (gids) to control access to the product areas.  Group ids 
get set on files and directories differently depending on whether you use System V or Berkeley 
semantics (the choice for most current Unix systems).  With System V semantics, new 
directories and files have the same gid as the account which created them.  With Berkeley 
semantics, new directories inherit the gid of the parent directory.

If you plan to allow product installs from multiple accounts, we strongly recommend using 
Berkeley semantics.  On newer systems, you select Berkeley by setting the set-group-id bit on 
the directory (i.e., chmod g+s <directory>).  On older systems this may require special 
options on the filesystem mount. 

UPD unwinds tar files with the permissions given when they were created.  Most of the 
product files do not have group-write enabled.  You might find it useful to make the products 
you install group-writable so that the same set of accounts that installs products can also delete 
them.  You will be able to set this in your local UPD configuration file (updconfig, 
described in Chapter 31:  The UPD Configuration File) in a postdeclare action, e.g.,:

ACTION = POSTDECLARE

    Execute("chmod -R g+w ${UNWIND_PROD_DIR}", NO_UPS_ENV)

Whether products are downloaded from a server or developed locally, the group ownership is 
still an issue.  For a locally developed product, sometimes many accounts need to be able to 
delete or modify it, and the group access needs to be set accordingly. There is no automatic 
way in UPS/UPD to enforce this, however.



UPS and UPD Pre-install Issues and General Administration 11-3

11.3  File Ownership, Permissions and Access 
Restrictions

11.3.1  Product Files

Product file ownership is determined by the installer account, as discussed in section 11.1 
Choosing Installer Accounts.  To determine adequate file permissions for UPS products, it is 
important to consider your user community.  Clearly users will need read access to the 
products they are allowed to use, but do you need to restrict access to any subsets of products?  
Do all users share the same group ids?  Who needs to install/delete products?  Who will be 
declaring products to the UPS database? These are the kind of questions you should keep in 
mind when setting up file permissions.

Some products, e.g., licensed products, should not be accessible to all users.  A simple way to 
restrict user access is to configure a special UPS database for your restricted products and 
make that database visible only to the appropriate subset of users.  Sometimes you may need to 
protect the files themselves, as well.  When extra security is required, we recommend that you 
create a special gid for the restricted products and that you turn off world access.  You will be 
able to configure UPD to set this group id on those products; this example shows how it can be 
done in updconfig (file described in Chapter 31:  The UPD Configuration File):

group:

    product = some_licensed_product

common:

    UPS_PROD_DIR = ...

    UNWIND_PROD_DIR = ...

    ...

    action = postdeclare

        Execute("chgrp -R <special_group> ${UPS_PROD_DIR}", NO_UPS_ENV)

        Execute("chmod -R o-r ${UPS_PROD_DIR}", NO_UPS_ENV)

end:

A stanza like this in the updconfig file should be otherwise identical to the existing default 
stanza that would have handled this product; only the postdeclare action should be 
added.  Within the updconfig file, the default stanza should come after any specialized 
stanzas, since UPD uses the first match it encounters.

11.3.2  Database Files

The UPS database files and pointers therein (e.g., to man page areas) have their own set of file 
permissions that are generally more open than the product files themselves.  In almost all 
cases, the UPS database files should be group-writable.  Set your umask to 002 before 
running upd install or ups declare on products to ensure this.  The files should be 
owned by an account with a gid that is shared by the installation account(s) and by any 
developers creating UPS products locally. 



11-4 UPS and UPD Pre-install Issues and General Administration 

11.4  Product File Location and Organization

11.4.1  Considerations

UPS/UPD imposes no restrictions on where product files can reside.  Product files can reside 
on any file system on any disk.  Different instances of the same product can reside in different 
file systems.  UPD allows you configure where you want specific products unwound.  The 
more generic your rules, the simpler your UPD configuration file (updconfig, described in 
Chapter 31:  The UPD Configuration File).

As a system manager, you should check how much space is available in each partition.  If you 
have many machines sharing disks, determine how they are shared.  Do they have the same 
mount points on all machines?  Is the /usr/local area shared across any machines? Are 
you cross-mounting to different OS flavors?   How should products be organized in the file 
system?  What do you want to keep local to a particular machine, local to all nodes of 
particular flavor, or shared cluster-wide?

Take into account these issues when deciding where to put product files, as well as databases 
and other files.  Your system configuration affects how many copies of a given product 
instance may be required on a given group of systems.  It also determines on how many 
separate machines a product instance may require that special actions be performed (e.g., 
configuring or declaring it current).

11.4.2  Single Flavor or Single Node Systems

For simple systems, e.g., single flavor or single node, the product files typically live under:

/path/to/<product_name>/<product_version>

However, this is not always adequate. An example is if you have more than one instance of the 
same version, but with different qualifiers.  In cases like this, the following is a better model:

/path/to/<product_name>/<version><qualifiers>

To implement this, all you need is one stanza in your updconfig file which lays out all the 
products in this way.

However, experience has shown us that it’s not always wise to assume that your system will 
forever have only one flavor; system upgrades are not so predictable.   See the next section, 
11.4.3, for more ideas.



UPS and UPD Pre-install Issues and General Administration 11-5

11.4.3  Multi-Flavor and/or Multi-Node Systems

Two separate directory structure conventions have evolved for products installed on 
multi-flavor systems.  Each has its own advantages and disadvantages.

1)  /path/to/<product_name>/<flavor>/<version><qualifiers> 

 In this configuration, all versions of a product are unwound on the same file system. This 
makes it easy to see what software is available using simple UNIX ls commands. 

2)  /path/to/<base_flavor>/<product_name>/<version><qualifiers><flavor> 

 This second case supports a separate file system for each operating system.  If one disk is 
currently not available, work can still continue on other machines. 

Note that in both cases, /path/to/ can be anything, and need not be the same for each 
product (but in general it’s easiest to maintain all products in the same area).  If more than one 
file system is used, UPD needs to be configured to know which products are installed in which 
file system.  If the products need to be seen across multiple machines, it is important that all 
the file systems be visible under the same directory structure on all machines.

Whichever structure you choose, when you have multiple flavors (or possible future multiple 
flavors) you may find it useful to create a flexible configuration that allows UPS/UPD to pick 
a different product directory based on flavor.

The following is a sample updconfig file showing how to do this.  The flavors of products 
we expect to install, in this case NULL and IRIX+6 products, get put in with nice, short 
pathnames (see UPS_PROD_DIR in the file), while everything else gets a longer pathname 
that explicitly includes the flavor.

file=updconfig

group:

 flavor=NULL

 flavor=IRIX+6

common:

 UPS_THIS_DB = "/fnal/ups/db"

 UPS_PROD_DIR = "${UPS_PROD_NAME)/${UPS_PROD_VERSION}${UPS_DASH_QUALIFIERS}"

 UNWIND_PROD_DIR = "${PROD_DIR_PREFIX}/${UPS_PROD_DIR}"

 UPS_UPS_DIR = "ups"

 UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

 UNWIND_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

 UPS_TABLE_FILE = "${UPS_PROD_VERSION}.table"

end:

group:

 flavor=ANY

common:

 UPS_THIS_DB = "/fnal/ups/db"

UPS_PROD_DIR="${UPS_PROD_NAME)/${UPS_PROD_VERSION}${UPS_DASH_FLAVOR}${UPS_DASH_QUALIF
IERS}"

 UNWIND_PROD_DIR = "${PROD_DIR_PREFIX}/${UPS_PROD_DIR}"

 UPS_UPS_DIR = "ups"

 UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

 UNWIND_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

 UPS_TABLE_FILE = "${UPS_PROD_VERSION}.table"

end:



11-6 UPS and UPD Pre-install Issues and General Administration 

11.5  Database File Location and Organization

11.5.1  Choosing Single or Multiple UPS Databases

The UPS database files are not large and do not require much disk space.  They can reside on 
any file system; either with the product files, or not.  You can choose to have one UPS database 
for all products installed on a mixed flavor cluster, you can have a separate UPS database for 
each flavor type, or you can choose another configuration. Typically, a single UPS database is 
used for all flavors. Multiple databases are more often used to house sets of user-specific 
products (e.g., CDF off-line products) rather than to distinguish between operating system 
flavors.

11.5.2  UPS Database File Pointers

A UPS database contains pointers to directories, the most important of which are the ones that 
contain the man page files and the UPS environment initialization files (setups.[c]sh; 
discussed in section 1.7.1 Initializing the UPS Environment).  These directories can be on 
different file systems from the database itself.  In order to best determine the locations and 
permissions for these directories, system administrators need to understand how they are used.

When a product is declared current, its man pages, if any, are (optionally) copied to a 
system-wide UPS product man page directory for which the location is set in the database 
configuration file, dbconfig.  This man page directory should be writable by anyone with 
the authorization to declare products current.  Historically, this directory has been maintained 
separately from normal system man pages, just to avoid any confusion or overlap.

Often this UPS man page area is shared between OS flavors.  This is an easy solution, but it 
can lead to confusion on mixed OS clusters.  If you have different versions of a product 
declared current for each flavor, the man pages will likely get out of sync.  For example, say 
you have an installed IRIX “current” chain for a product, and you later declare a SunOS 
instance “current”.  If the man page area is shared, this new man page overwrites the older one.

The setups.[c]sh files make the UPS environment available by defining the UPS 
database(s) and setting up UPS itself.  These files are invoked by each individual user’s login 
scripts, and their location is configured in the UPS database configuration file dbconfig.  In 
the past, these files have been kept in /usr/local/etc; however, this has been a problem 
on machines where the person installing UPS does not have root access.  A more common 
practice now is to put them in a directory parallel to the main UPS database itself, e.g., 
$PRODUCTS/../etc.



UPS and UPD Pre-install Issues and General Administration 11-7

11.6  Installing UPS for Use Without a Data-
base

UPS can be installed on a machine to manage products without a UPS database, as mentioned 
in section 1.5 Using UPS Without a Database.  This flexibility is provided primarily for 
off-site users who for one reason or another do not want to maintain a UPS database on their 
local system. 

Before making the decision to do without a UPS database, be aware that UPS allows much 
more flexibility now.  UPS is no longer tied to products such as futil and systools, and the 
database can be maintained anywhere on your system.

To install UPS in this way:

1) Create a products area (not strictly necessary, but this keeps things more organized). 

2) Download UPS into the products area using FTP, as described in Chapter 7:  Installing 
Products using FTP.

3) Initialize your UPS environment as described in section 1.7.1 Initializing the UPS 
Environment.

A locally installed product instance would have no version or chain files, of course, but it 
would need a table file (very few products come without one).  If there are any functions in the 
table file for setting up product dependencies (e.g., the function setupRequired or 
setupOptional), you’ll need to check each of these functions to make sure it includes a 
table file specification.  This is necessary in order to continue to bypass the need for a database.

Make sure your users are made aware that:

• UPS/UPD functionality requiring or operating on a UPS database is not supported when 
UPS is implemented without a database (e.g., setup should work, but ups 
declare won’t).

• Any UPS/UPD command must include all of the information that normally would have 
been read from a database.  In particular, all commands require the -m option for table 
file name (and usually -M for the table file directory).

11.7  CYGWIN (Windows NT) Issues

A number of CYGWIN-specific problems have been encountered. We’ll highlight the most 
frequent ones here.

11.7.1  Using Correct Perl Version

You must run a version of perl that is built against CYGWIN itself, not one arbitrarily 
obtained off the net.  You can get a working perl for CYGWIN from KITS.



11-8 UPS and UPD Pre-install Issues and General Administration 

11.7.2  Mounting the CYGWIN bin Directory

The CYGWIN bin directory should be mounted in /usr/bin and a symbolic link must 
be made from /usr/bin to /bin.

11.7.3  Setting Environment Variables 

For UPD to work properly, make sure that:

• $TMPDIR is set to a directory that really exists and that can be used for holding 
temporary files

• $USER is set to your userid

11.8  General Administration Issues

11.8.1  Upgrading an Older System

Prior to UPS/UPD v4, the Fermi User Environment (FUE) included a suite of utilities and 
binaries which were copied into /usr/local.  The required FUE utilities, with a brief 
description of each, were: 

systools system administration utilities, located under /usr/local/systools; the 
utilities included the Fermi login scripts and ups initialization files, as well as the 
cmd function (which allows non-privileged users to do specific privileged 
things) and various “cmd <utilities>”, e.g., adduser, renice, etc. 

funkern programs called from the Fermi login scripts, copied into /usr/local/bin 

fulib C-callable library of the funkern utilities 

futil a random assortment of odds and ends that were considered to be Generally 
Useful Utilities, copied into /usr/local/bin 

FUE has recently been redesigned utilizing the new features of UPS v4.  The redesign has been 
very successful, and is in use on all FUE-compliant systems installed since the autumn of 
1999.  To upgrade an older system and clean up the vestiges of the old FUE, you must first 
upgrade to the new FUE which includes UPS/UPD v4_0 or higher (v4_5_1 as of May 2000), 
and systools v6_0 or higher (and all of its dependencies). You must also convert existing 
accounts’ login scripts to the new FUE syntax.  Two technical notes are available to guide you 
through this process.  See:

TN0088 Files which you may be able to remove from /usr/local 
(http://www.fnal.gov/docs/TN/tn0088.html) 

TN0089 FUE Login Methodology 
(http://www.fnal.gov/docs/TN/tn0089.html).



UPS and UPD Pre-install Issues and General Administration 11-9

11.8.2  Adding a New Database and/or Products Area

There are different reasons for adding a new products area.  For example, you may run out of 
room in one area and need another, or you may want different categories of products stored in 
different areas and accessible to different groups of people.  For development and/or testing 
purposes, it is often convenient to install products in a separate products area and declare them 
in a separate, associated UPS database.

Checklist

Here is a checklist of the tasks involved (assuming UPS/UPD is already installed and working 
on your system):

• Create a directory for the UPS database (e.g., /path/to/db).

• Create a products area

• Create a UPS configuration file (/path/to/db/.upsfiles/dbconfig).

• Create a UPD configuration file (path/to/db/.updfiles/updconfig).

• Create an empty dummy directory under the database (e.g., /path/to/db/xxx).1  

• Prepend your database path to $PRODUCTS; colon separated (e.g., setenv 
$PRODUCTS "/path/to/db:${PRODUCTS}").

• If you are at UPS version v4_4a or earlier, include the file updusr.pm under 
/path/to/db/.updfiles.  Insert as the file contents the following single line: 
require ’default_updusr.pm’;

Example

Here we provide an example of creating a new product area (we’ll use /fnal/ups/prd) 
complete with a new database (/fnal/ups/db).  We’ve created a shell script called 
newupsarea.  To run it, we must supply the directory which houses the database and 
products area (/fnal/ups) as an argument.  First, let’s look at this script:

#!/bin/sh

db=$1/db
pdp=$1/prd
mkdir -p $db/.upsfiles
mkdir -p $db/.updfiles
mkdir -p $pdp
cp $UPD_DIR/ups/updconfig.template $db/.updfiles/updconfig
cp $UPD_DIR/ups/updusr.pm.template $db/.updfiles/updusr.pm
cp $UPS_DIR/ups/dbconfig.template  $db/.upsfiles/dbconfig
perl -pi.orig -e ’s{/fnal/ups}{’$1’};’ $db/.upsfiles/dbconfig
# work around empty db bug...
mkdir $db/xxx

To run this, issue the command:

% newupsarea /fnal/ups

This creates the database (/fnal/ups/db), its subdirectories, the PROD_DIR_PREFIX 
directory (/fnal/ups/prd), copies the UPS and UPD configuration files from templates, 
and changes the references to /fnal/ups in the copy of the template dbconfig file.  
Finally, it makes a directory (xxx) under the database2.

1. Given a database with the subdirectories .upsfiles and .updfiles and noth-
ing else, the command ups list -K PROD_DIR_PREFIX fails to list that database 
and its prefix.  In turn, UPD fails to find PROD_DIR_PREFIX for that database, and so 
on.  Simply adding an empty subdirectory solves the problem.



11-10 UPS and UPD Pre-install Issues and General Administration 

11.8.3  Collecting Statistics on Product Usage

UPS supports recording of the following statistics on product usage and UPS database access:

• Userid of person executing UPS/UPD command

• Date and time

• Which command was executed (including options and arguments)

• Which product instance was selected by command

Collection of statistics is controlled by an entry in one or more database files.  See the 
reference section 27.6.3 STATISTICS for a description of how to implement this.

2. Given a database with the subdirectories .upsfiles and .updfiles and noth-
ing else, the command ups list -K PROD_DIR_PREFIX fails to list that database 
and its prefix.  In turn, UPD fails to find PROD_DIR_PREFIX for that database, and so 
on.  Simply adding an empty subdirectory solves the problem.



Providing Access to AFS Products 12-1

Chapter 12:   Providing Access to AFS Products

This chapter describes how to provide access on your local machine to UPS products installed 
in AFS space. 

12.1  Overview

 Much of the information in this chapter is adapted from document number TN0091, 
Configuring a Local UPS Database (While Still Using the Centrally Supported AFS database), 
found on the Web at http://www.fnal.gov/docs/TN/tn0091.html.

To minimize duplicate effort in supporting software, a centrally-supported UPS database in 
AFS space is maintained by the product developers.  Systems running AFS are encouraged to 
use the AFS UPS database for the majority of their software needs.  However, there are cases 
where a local database is needed in addition to the AFS database (for locally maintained or 
developed software, different version requirements, and so on).

A system in AFS space does not need to run the bootstrap procedure documented in Chapter 
13:  Bootstrapping CoreFUE.  UPS, UPD, and perl (these products together are referred to as 
CoreFUE) are already available to you via the UPS database in AFS space.

You can configure your system for a number of different options regarding AFS product 
availability:

• a local UPS database but no local CoreFUE installation, providing access to local and 
AFS products

• a local UPS database and local CoreFUE installation, also providing access to local and 
AFS products

• no local UPS database (nor local CoreFUE installation), providing access to AFS 
products only

Whether you want to maintain a local database or not, if you want access to the UPS products 
in AFS space, you need to update your /usr/local/bin area as shown in section 12.5 
Updating /usr/local/bin to Access AFS Products.

For those of you who choose to maintain a local database, we recommend that you not install 
CoreFUE locally unless it is absolutely necessary.  In most cases, the disadvantages (extra 
product maintenance responsibilities and a more complicated configuration) considerably 
outweigh the benefits (access to products when AFS is down and more flexibility in file 
naming conventions).



12-2 Providing Access to AFS Products 

Note that the concepts discussed here are equally applicable to local UPS databases on 
machines in an NIS cluster with its own common NFS-mounted database.  You must make 
suitable modification to the particular details, e.g., wherever you see 
/afs/fnal.gov/ups, replace it with the appropriate path to the NFS-mounted area, e.g., 
/fnal/ups. 

12.2  Configuring a Local Database to Work 
With AFS

Here we describe how to configure your system to provide access both to locally installed 
products, declared in a local UPS database, and to products in the AFS-space UPS database.1   
In this and following subsections, $PARENT_DIR refers to the local directory under which all 
the UPS database files and product files reside.

Note ahead of time that there are several local configurations preset in AFS space (i.e., the 
AFS $SETUP_DIR/upsdb_list file recognizes these locations).  We recommend that 
you choose one of them.  In fact, if the local database and products area are put in a non-preset 
location, then this scheme becomes much harder to implement without a local copy of 
UPS/UPD; see section 12.4 Additional Steps for Unfamiliar Naming Conventions.  In general, 
the recommended directory under which all the UPS database files and product files reside 
($PARENT_DIR) is: 

/fnal/ups the standard naming convention provided by several 
bootstrap configurations for product server nodes

Other preset configurations:

/local/ups standard provided by the Fermi RedHat Linux bootstrap 
for satellite nodes

/usr/products another popular naming convention

/usr/products/CMSUN1 standard for CMS local databases

12.2.1  Steps to Create and Configure the Database

1) Create the top-level directory ($PARENT_DIR).  Make sure that your products account 
(or whichever account should own the product files) can read and write to this directory.

2) Log in as products, cd to $PARENT_DIR and create the following directories: 

% mkdir db contains the database

% mkdir db/.upsfiles local UPS configuration file goes here

% mkdir db/.updfiles local UPD configuration file goes here

% mkdir prd local product file hierarchy begins here

% mkdir man local man pages go here

% mkdir catman local catman pages go here

1. The astute reader will notice that there are an infinite number of alternatives; the steps 
shown are, however, sufficient for most purposes.



Providing Access to AFS Products 12-3

3) Create the UPS database configuration file for your local database:

% setup ups using the copy of UPS in AFS space!

% cd $PARENT_DIR/db/.upsfiles

change to the location of your local UPS 
configuration

% cp $UPS_DIR/ups/dbconfig.template ./dbconfig

copy the template dbconfig file from the 
UPS in AFS space to your area

 Edit your local dbconfig file and replace /fnal/ups with your $PARENT_DIR, 
if different from /fnal/ups. 

4) Create the UPD configuration file for your local database:

% setup upd using the copy of UPD in AFS space!

% cd $PARENT_DIR/db/.updfiles

change to the location of your local UPD 
configuration

% cp $UPD_DIR/ups/updconfig.template ./updconfig

copy the template updconfig file from the 
UPD in AFS space to your area

 In most cases the default updconfig file should be perfectly adequate.

5) Create the FUE initialization files for your system.  These are the files that will be 
called when users log in (or when other processes start) in order to initialize the FUE 
environment.

 If your configuration follows a well-known naming convention (/fnal/ups, 
/local/ups, /usr/products or /usr/products/CMSUN1) you can take 
advantage of the configuration already maintained in AFS space by creating symbolic 
links that you never need to modify again (here we assume that $PARENT_DIR is set to 
/fnal/ups):

% cd $PARENT_DIR change to your $PARENT_DIR

% ln -s /afs/fnal.gov/ups/etc ./etc

this makes your $SETUPS_DIR a link to AFS

 If you are creating the “courtesy links”, you should log in as root and run the following 
commands: 

% cd /usr/local/etc

% ln -s /afs/fnal.gov/ups/etc/setups.csh ./setups.csh

% ln -s /afs/fnal.gov/ups/etc/setups.sh  ./setups.sh

Your local database is now configured.  

If your configuration does not conform to a well-known convention, please refer to section 
12.4 Additional Steps for Unfamiliar Naming Conventions.



12-4 Providing Access to AFS Products 

12.2.2  Post-Configuration: Reinitialize FUE Environment

To use your configured database, reinitialize the FUE environment for your process by 
running:

For the C shell family: % unsetenv PRODUCTS

% source $PARENT_DIR/setups.csh

For the Bourne shell family: $ unset PRODUCTS

$ . $PARENT_DIR/setups.sh

Your $PRODUCTS environment variable should now include both databases (with the local 
database coming before the AFS database). 

12.2.3  A Note about Product Installation for this Configu-
ration

Users of this type of configuration typically install products using UPD (see Chapter 5:  
Installing Products Using UPD).  Make sure that the product installers on your system know 
that to install a product into the local database, they must use the AFS installation of 
UPS/UPD, but UPD must use your local configuration files.  This is very important!  
Assuming that $PRODUCTS lists your database first, and the product in question doesn’t exist 
in the AFS database, you can run upd install without any database option and your 
product will go into the local database.1  Otherwise, include the -z option in the upd 
install command, e.g.,:

% upd install -z /fnal/ups/db[:other-dbs] ...

12.3  Installing a Local Copy of CoreFUE

Recall that we discourage installing and maintaining CoreFUE locally when the machine is 
running AFS.  The pros and cons are spelled out in document number TN0091, Configuring a 
Local UPS Database (While Still Using the Centrally Supported AFS database), found on the 
Web at http://www.fnal.gov/docs/TN/tn0091.html.

To install CoreFUE locally, first create and configure your local UPS database as outlined in 
section 12.2 Configuring a Local Database to Work With AFS.  Use the AFS installation of 
UPD to install UPS, UPD and perl into the local database (yes, UPD can install itself 
elsewhere).  Then, in your $SETUPS_DIR/upsdb_list file ($SETUPS_DIR is set in the 
dbconfig file), make sure that you include/activate the line:

/afs/fnal.gov/ups/db

1. This also assumes the local updconfig file says to install in the local database.



Providing Access to AFS Products 12-5

A Note about Product Installation for this Configuration

Whenever you use UPD, set up the instance in the local database to ensure that it uses your 
local updconfig file by default.  If you set up the AFS installation of UPD, you can use 
upd install -z /path/to/yourdb[:other-dbs] to make it use the local 
configuration.

12.4  Additional Steps for Unfamiliar Naming 
Conventions

If your UPS database configuration does not conform to one of the well-known conventions in 
AFS space, you will need a way of making sure that your local UPS database is included in 
$PRODUCTS. There are three ways to accomplish this: 

1) Lobby to be added to the list of well-known conventions.  Send mail to ups@fnal.gov 
stating the name of the local UPS database, and a good reason why it should be 
mentioned in the lab-wide AFS upsdb_list (list of known local databases). 

2) Use $UPS_EXTRA_DIR.  Make sure that everybody who needs access to your local 
UPS database modifies all of their login scripts (and other scripts) to set the 
$UPS_EXTRA_DIR environmental variable to your database before they source the 
setups.[c]sh script.  This is a viable alternative if there is only a small community 
of people who need this database (e.g., a small group of developers on your local 
system). 

 For example: 

# Cshell example of $UPS_EXTRA_DIR

#

setenv UPS_EXTRA_DIR /our/unfamiliar/local/db

source /afs/fnal.gov/ups/etc/setups.csh

 Any directories in $UPS_EXTRA_DIR will be prepended to the database directories 
listed in the upsdb_list file the first time you source the setups.[c]sh script. 
(Of course, you can always prepend the appropriate database to your $PRODUCTS 
manually at any time). 

3) Install the components of coreFUE locally (UPS, UPD and perl).  Maintain your own 
version of the setups.[c]sh scripts by installing a local copy of the coreFUE 
product into your database.  Setup the AFS space UPD product:

%  setup upd

 Use this to install coreFUE into your local database and chain it to current:

%  upd install coreFUE -z $PARENT_DIR/db -G -c                       

Then make sure that your copy of the $SETUPS_DIR/upsdb_list contains all of the 
directories that you wish to include in $PRODUCTS (including the AFS UPS database). 

If you are creating the “courtesy links”, you should log in as root and issue the commands 
($PARENT_DIR is the common parent directory for the local database and products area): 

% cd /usr/local/etc

% ln -s $PARENT_DIR/etc/setups.csh ./setups.csh



12-6 Providing Access to AFS Products 

% ln -s $PARENT_DIR/etc/setups.sh  ./setups.sh

Remember, you will need to keep these local copies of UPS, UPD, perl up to date! 

12.5  Updating /usr/local/bin to Access AFS 
Products

Whether you configure a local UPS database or not, if your machine runs AFS and you want 
access to any AFS-space UPS products, you need to update certain files (or links to files) in 
your local /usr/local/bin.  These required links and/or files are associated with 
programming shell and login shell products in the AFS-space UPS database.  Currently the list 
of products that require files or links to files in /usr/local/bin are:  perl, tcsh, bash, 
python (if you need it), and systools1 (see section 8.1 Installing Products that Require Special 
Privileges for more information).  We are trying to minimize the number of products which 
write into /usr/local, and we hope the process of updating this area won’t be necessary in 
the future.

Here’s how to update your local /usr/local/bin: 

1) Mount /afs by running mount /afs.

2) Set the variable $PRODUCTS to your local database.

3) You need your local node to point to the UPS in AFS space.  If you’ve configured a 
local database, you’ve probably already done this step.  If not, login as root and issue 
the following commands to set your /usr/local/etc courtesy links to point to 
/afs/fnal/ups/etc/setups.[c]sh:

% cd /usr/local/etc

% ln -s /afs/fnal.gov/ups/etc/setups.csh .

% ln -s /afs/fnal.gov/ups/etc/setups.sh  .

4) Then, still logged on as root, update your /usr/local, by running the following 
commands (from any directory): 

% source /usr/local/etc/setups.csh

 (or $ . /usr/local/etc/setups.sh for Bourne shell)

% ups installasroot perl

% ups installasroot bash

% ups installasroot tcsh

% ups installasroot python

1. As of this writing, systools is not really part of this list, but we expect it to be added.



Bootstrapping CoreFUE 13-1

Chapter 13:   Bootstrapping CoreFUE

CoreFUE is a bundled product which includes UPS/UPD and perl.  It refers to the core 
components of the Fermi UNIX Environment (FUE).1  When we discuss installing UPS/UPD, 
we’re generally talking about coreFUE since perl is a required component.  Here we describe 
how to use automated scripts to bootstrap coreFUE, that is, to install coreFUE on a machine 
on which no prior versions of these products are installed.  Several project-specific 
configurations of UPS/UPD are available.

The v2_0 version of the bootstrap for UPS has been significantly streamlined and is less 
error-prone than the preceding release.  Automated installs are available for UNIX and NT 
(with CYGWIN).   The UNIX install requires about 50M, and the NT about 70M.  You can 
choose a pre-defined configuration and use it as is or edit it, or you can define your own 
configuration.  Alternatively, it is possible to run a manual installation from a bootstrap tar file 
(this option not documented here; see Bootstrap CoreFUE Installation Summary at 
ftp://ftp.fnal.gov/products/bootstrap/v2_0/manual_install.html).

If you plan to run UPS without a database (as discussed in section 11.6 Installing UPS for Use 
Without a Database), don’t use the bootstrap procedure.  Just download UPS using FTP, as 
described in Chapter 7:  Installing Products using FTP.

13.1  Downloading the Bootstrap and Configu-
ration Files

The bootstrap script for UNIX is called stage1.sh.  For NT it is called stage1.bat.  
They are both available for download from 
ftp://ftp.fnal.gov/products/bootstrap/v2_0/.  Besides that, the only other 
file you need to download is a configuration file.  There are several configuration files from 
which to choose, as described below.

13.1.1  Predefined Configurations for UNIX

These configurations are intended mainly for on-site users with administrative privileges on 
their systems.  Choose one of the following customized configuration files found under 
ftp://ftp.fnal.gov/products/bootstrap/v2_0/configs/:

1. Another bundled product you should know about is FullFUE.  It consists of coreFUE 
plus systools, sectools, futil, login_shells and some “courtesy links”.  FUE is described in 
the document DR0009, available at http://www.fnal.gov/docs/Recommen-
dations/dr0009.html.



13-2 Bootstrapping CoreFUE 

local puts a products area under /local/ups, creates a 
products account if needed, and installs fullFUE if it 
doesn’t exist in other standard products areas (e.g., 
/afs/fnal/ups, /fnal/ups) 

generic puts a products area under /fnal/ups, creates a 
products account if needed, and installs fullFUE if it 
doesn’t exist in other standard products areas (e.g., 
/afs/fnal/ups, /fnal/ups) 

D0 sets up the standard three D0 RunII development UPS 
areas (/usr/products, /d0usr/products, and 
/d0dist/dist), creates a products account if needed, 
installs other products to facilitate D0 development (cvs, 
d0cvs, python) and installs fullFUE

test sets up a minimal UPS area under /tmp/ups

13.1.2  User-defined Configuration for UNIX

To create your own configuration file you’ll need the configurator script, available from 
ftp://ftp.fnal.gov/products/bootstrap/v2_0/configurator.  Once it’s 
downloaded, run the script by issuing the command sh configurator and answer the 
questions.  This generates a user-customized configuration file called config.custom.  
Here is a sample session:

% sh configurator

Should we put symlinks and login shells in /usr/local[Yn]? n

Do you want to use the existing AFS products area[Yn]? n

Do you want to use any other existing products areas[yN]? n

Do you want to create a database local to this system[Yn]? y

What is the path to the database[/fnal/ups/db]? /scratch/mengel/products/db

Of the following databases:

    1/scratch/mengel/products/db

From which one do you want to get coreFUE (ups, upd, etc.)[1-1]? 1

Should we install the full FUE environment in the local database[yN]? y

Warning -- installing fullFUE without writing in /usr/local may not work

Can we write in /usr/local after all[Yn]? n

Are you sure we should do fullFUE[yN]? n

Writing config.custom

13.1.3  Predefined Configurations for NT

These configurations are mainly targeted at D0 and SVX Run II developers.  Download one of 
the following customized configuration files from 
ftp://ftp.fnal.gov/products/bootstrap/v2_0/configs/:

SVX puts a products area under C:\products 

D0cygC puts the three D0 Run II products areas under C:\D0RunII 

D0cygD puts the three D0 Run II products areas under D:\D0RunII 

D0cygE puts the three D0 Run II products areas under E:\D0RunII 



Bootstrapping CoreFUE 13-3

13.2  Customizing a Bootstrap Configuration

If you plan to use one of the available configuration files as is, skip down to section 13.3 
Running the Bootstrap Procedure.

The bootstrap process includes only steps listed in the specified configuration file1.  
Customizing the bootstrap process therefore only involves editing the configuration file you’ve 
chosen.  Notice that the configuration file contains several types of instructions.  The 
statements are grouped by type and executed in the order shown below.  We recommend that 
you keep them in this order as you edit your configuration file.

13.2.1  Bootstrap Configuration File Statement Definitions

# ... 
Comments 

set_variable <variable>="<string>" 
Sets variables for the script to use.  There are two required variables in the configuration 
file:

bootbase URL of bootstrap files

upsdb_list UPS database list; separate database paths with a space (used to create 
$SETUPS_DIR/upsdb_list).  To include the AFS UPS database, 
include /afs/fnal.gov/ups/db.

You can also define your own variables here and use them in later statements.

check_space </path/to/directory> <size>
Verifies that blocks of the specified size are free in /path/to/directory.

download_file <URL> [<local>]
Pulls down a file for the script to use.  It can be any URL, any protocol.

pre_install_command "<shell_command>"
Runs specified shell command after any download_file lines and before any 
create_user lines

create_user <name> <uid> <gid> <home>
Adds a userid entry to /etc/passwd.  (This has no effect on NT systems.)

create_db <path> <dbconfig_file> <updconfig_file> <owner>
Creates a UPS database.  If either of the files is specified as “-”, the command uses the 
corresponding template file within the downloaded UPS product.  If the owner is specified 
as “-”, it uses the current userid.

install_coreFUE <database>
Installs the coreFUE product in the specified database, with the owner products if 
possible (it checks the /etc/password file for a line starting with products:).

1.  It also puts a temporary UPS products area in $TMPDIR, which it cleans out when its 
done.  $TMPDIR defaults to /var/tmp/bootups.



13-4 Bootstrapping CoreFUE 

install_as <user> <product> <upd_install_options>
Runs a upd install -G -c <upd_install_options> of the specified 
product, as <user> if possible (again, it checks the /etc/password file for a line 
starting with <user>:).

do_ups <action>
Runs an action from the table file of the UPS product via the command ups 
<action>.

make_courtesy_links
Makes links in /usr/local/etc to setups.sh, etc.

post_install_command "<shell_command>"
Runs the specified command, after all the preceding steps are complete.

13.2.2  Sample Customization

In this example, we assume that the bootstrap configuration file D0 has already been 
downloaded.  We want to edit it such that it prevents the bootstrap from downloading the third 
listed dbconfig file , dbconfig3.D0.  

First we create a replacement dbconfig file (we’ll call it /tmp/dbconfig), and then change 
the configuration file to refer to it.  Let’s look at the (abbreviated) file contents prior to the 
change (affected lines in bold):

...

#---------------------------------

# files to download

#             remote                                    local

#             -----                                     -----

download_file $bootbase/downloads/updconfig.D0          updconfig

download_file $bootbase/downloads/dbconfig1.D0          

download_file $bootbase/downloads/dbconfig1.D0          

download_file $bootbase/downloads/dbconfig3.D0  

...

#------------------------------------

# databases

#         database              dbconfig        updconfig       owner

#         --------              --------        ---------       -----

create_db /usr/products/upsdb   dbconfig1.D0    updconfig       products

create_db /d0dist/dist/upsdb    dbconfig2.D0    updconfig       products

create_db /d0usr/products/upsdb dbconfig3.D0 updconfig   products

To make the change, we comment out the last download_file statement and change the 
name of the dbconfig file in the third create_db statement:

#---------------------------------

# files to download

#             remote                                    local

#             -----                                     -----

download_file $bootbase/downloads/updconfig.D0          updconfig

download_file $bootbase/downloads/dbconfig1.D0          

download_file $bootbase/downloads/dbconfig1.D0          

# download_file $bootbase/downloads/dbconfig3.D0  

...



Bootstrapping CoreFUE 13-5

#------------------------------------

# databases

#         database              dbconfig        updconfig       owner

#         --------              --------        ---------       -----

create_db /usr/products/upsdb   dbconfig1.D0    updconfig       products

create_db /d0dist/dist/upsdb    dbconfig2.D0    updconfig       products

create_db /d0usr/products/upsdb /tmp/dbconfig updconfig  products

13.3  Running the Bootstrap Procedure

To run the bootstrap, invoke the stage1.sh[bat] script and give it your configuration 
file as an argument (as shown for both UNIX and NT below).  The stage1 script downloads 
the bootstrap tar file and unwinds it, then runs a stage2 script that first verifies the integrity 
of the configuration script and then executes it.  

If stage2 finds errors, it outputs the information to a log and tells you how to reinvoke the 
stage2 script.1  This allows you to restart the bootstrap process where you left off.

13.3.1  UNIX

To run the bootstrap, issue the command (from any directory): 

% sh stage1.sh <config-file-name>

and the install will either take place, as the following output shows:

0% complete

(several minutes pass, the percentage updates...)

100% complete

Bootstrap succeeded.

or tell you of any impediments.  For example:

The ups bootstrap cannot proceed because:

  * ups products database area already exists under /local/ups

  * ups setups scripts already exist under /usr/local/etc

  * ups setups scripts already exist under /local/ups/etc

These directories must be cleared before we can proceed.

If you get error messages, and you want to proceed anyway, you can run:

% sh stage1.sh -F <config-file-name>

to force the install (but we do not recommend it). 

13.3.2  NT

In a DOS command prompt window, issue the command: 

U:\> stage1.bat <config-file-name>

1. The log file is maintained as $TMPDIR/bootups.log, where $TMPDIR defaults to 
/var/tmp on UNIX and %TEMP%\ on NT.  The message will be at the end of the 
(rather long) log file.



13-6 Bootstrapping CoreFUE 

If the install succeeds, you will see output like this:

Redirecting output to C:\TEMP\bootups.log

(window pops up showing percentage done)

Bootstrap succeeded!

A Cygwin<version>.bat file appears on your desktop that you can use to start 
CYGWIN.

If the install fails, it should provide error messages, for example:

"The bootstrap cannot proceed because:"

 * ups products database area already exists under C:\D0RunII\d0usr\products

 * ups products database area already exists under C:\D0RunII\d0usr\products

 * ups products database area already exists under C:\D0RunII\d0dist\dist

"These directories must be cleaned out before the bootstrap can run"

 If you get error messages, and you want to proceed anyway, you can run:

U:\> stage1.bat -F <config-file-name>

to force the install (again, not recommended). 



Automatic UPS Product Startup and Shutdown 14-1

Chapter 14:   Automatic UPS Product Startup 

and Shutdown

This chapter covers configuring your system to support automatic startup and shutdown of 
UPS products, and installing individual UPS product instances to start and stop automatically.  
The current bootstrap procedure (see Chapter 13:  Bootstrapping CoreFUE) ensures that when 
UPS gets installed on a system, it is configured to enable this feature.

Note that very few products need to be run automatically; a couple of examples are juke and 
apache.

14.1  Configuring Your Machine to Allow 
Automatic Startup/Shutdown

Two scripts are supplied by UPS and used to run products automatically at boot time, 
ups_startup and ups_shutdown.  A third script, called ups, must be supplied by you 
and placed in the init.d directory where it will be executed at boot time.  It is used to 
configure your machine for automatic startup/shutdown and to call the first two scripts.  When 
UPS gets installed and configured on a system, ups_startup and ups_shutdown get 
copied into separate directories under $PRODUCTS/.upsfiles, as follows:

$PRODUCTS/.upsfiles/startup/ups_startup

$PRODUCTS/.upsfiles/shutdown/ups_shutdown

We encourage you to use the sample ups script given below, with no changes except the 
database path (defined by upsdb).  It works for all supported UNIX flavors.

The ups Script Particulars

The script must be called ups.  The location of the init.d directory in which it must 
reside is OS-specific, as follows:

Operating System Directory

IRIX, SunOS /etc/init.d

Linux /etc/rc.d/init.d

OSF1a

a. On OSF1 systems the system start-up directories 
init.d, rc2.d and rc0.d are under /sbin, 
not /etc.

/sbin/init.d



14-2 Automatic UPS Product Startup and Shutdown 

Set the ups file ownership and permissions properly by running:

% chown 0 ups

% chgrp 0 ups

The ups Script Contents

#!/bin/sh

upsdb=/local/ups/db

state=$1

case $state in

  ’start’)

      start=$upsdb/.upsfiles/startup/ups_startup

      (while [ ! -f $start ]; do sleep 5; done; $start) &

      ;;

  ’stop’)

     $upsdb/.upsfiles/shutdown/ups_shutdown

     ;;

  ’config’)

     case $0 in

     /*) initd=$0;;

     *)  initd=‘pwd‘/$0;;

     esac

     sfile=‘echo $initd | sed -e ’s;init.d/;rc3.d/S99;’‘

     kfile=‘echo $initd | sed -e ’s;init.d/;rc0.d/K01;’‘

     ln -s $initd $sfile

     ln -s $initd $kfile

     sfile=‘echo $initd | sed -e ’s;init.d/;rc5.d/S99;’‘

     kfile=‘echo $initd | sed -e ’s;init.d/;rc6.d/K01;’‘

     ln -s $initd $sfile

     ln -s $initd $kfile

     ;;

  *)

     echo "usage: $0 {start|stop|config}"

     ;;

esac

14.2  Installing a UPS Product to Start and/or 
Stop Automatically

This section contains the information you need in order to install appropriate UPS products to 
run automatically.  A rudimentary understanding of actions and functions in table files is 
helpful (see Chapter 33:  Actions and ACTION Keyword Values and Chapter 34:  Functions 
used in Actions).  The autostart/autostop processes are run via a set of control files and the 
commands ups start and ups stop.

14.2.1  Determine if Auto Start/Stop Feature is Enabled

Unless you’re installing the product UPS itself, you don’t need to understand how the 
automatic startup/shutdown feature gets enabled, but you may need to determine whether it is 
enabled or not.  The files $PRODUCTS/.upsfiles/startup/ups_startup and 



Automatic UPS Product Startup and Shutdown 14-3

$PRODUCTS/.upsfiles/shutdown/ups_shutdown are the scripts that initiate the 
startup/shutdown functions in UPS.  The automatic startup/shutdown feature is enabled if and 
only if these three conditions are met:

• the ups_startup and ups_shutdown files exist

• the appropriate system startup files on your machine are configured to call these files 
(described in section 14.1 Configuring Your Machine to Allow Automatic 
Startup/Shutdown)

• an appropriate control file exists

14.2.2  Determine if Product is Appropriate for Autostart

Products that are appropriate to run in this fashion (should) come equipped with START and 
STOP actions in their table files.  For products configured in the old UPS style (prior to v4), 
the functions comprising these actions will probably be 
sourceRequired(/path/to/<start_script>) and 
sourceRequired(/path/to/<stop_script>), respectively.  This function is 
described in section 34.3.27 sourceRequired.  The specified paths must point to executables 
that contain start and stop instructions for the product.

Often these products also come with an TAILOR action in the table file (see section 3.6.2 
Tailoring a Product).  Once the product has been configured and tailored properly, 
ACTION=START functions are run at boot time to start the product and ACTION=STOP 
functions are run at system shutdown to stop it.

14.2.3  Edit Control File(s)

In order to make known to the system that your product is to be started at boot time, you will 
need to add a specific line of text to the appropriate control file.  This line provides the actual 
start command for the product.  Go to the $PRODUCTS/.upsfiles/startup 
directory1.  There you may find one or more files with the name <node>.products 
(where <node> is one of the nodes in your cluster, e.g., fsgi02.products) and/or 
<flavor>.products (where <flavor> is one of the flavors in your cluster, e.g., 
IRIX+5.products).   If you want your product to run as an automatic startup process on a 
single node in your cluster, edit the file appropriate to that node, or create the file if it doesn’t 
exist.  If you want it to run on all nodes of a particular flavor, edit or create the file appropriate 
to that flavor.  A line for a particular product can exist in more than one file, i.e., both the 
corresponding node-specific and the flavor-specific files.  The system runs all these files at 
boot time and uses only the first ups start command it finds for a product.

Add a line of the following format to the appropriate file(s):

/bin/su - <login_id> -c "ups start [<options>] <product> 
[<version>]"

Notes:

• The login id is that under which ups start must be run.  If the login id is root, you 
can leave out the portion /bin/su - <login_id> -c, and the line can start from 
ups start (no quotes needed in this case).

1. If $PRODUCTS includes more than one database, use the startup directory in the 
database in which the active (usually current) instance of UPS resides.



14-4 Automatic UPS Product Startup and Shutdown 

• The -c shown here does not refer to the current chain, rather it is an option to the 
/bin/su call which tells it to execute ups start.  

• The ups start script should initialize the UPS environment (see section 1.7.1 
Initializing the UPS Environment), and the login id used here should not.  You could opt 
to have the login id initialize the environment instead, but we recommend against it, 
especially if it’s the root account.  If the root account runs the standard Fermi files, then 
you can’t use it to get into a system where there are problems with the Fermi/UPS 
environment.

In the directory $PRODUCTS/.upsfiles/shutdown you will find files named similarly 
to the startup control files.  The files here tell your system to stop the process at shutdown.  
You will need to edit one or more of them.  Add a line of the following format to the 
appropriate file(s):

/bin/su - <login_id> -c "ups stop [<options>] <product> 
[<version>]"

The same notes regarding the login id and -c option apply.

Make sure the permissions of all the <node>.products and <flavor>.products 
files are set to 744.  This ensures that the files will be executable by root and that they have 
appropriate permissions for avoidance of security holes.  If your products area is NFS mounted 
to all the appropriate machines (i.e., common to them), you only need to create these files 
once.  If not, you need to create these files once for each products area.

14.2.4  Summary

1) Declare the product to the UPS database (if configuration via ups configure is 
required it gets done in this step by default; see section 3.6.1 Configuring a Product).

2) Tailor the product (usually but not always required).

3) Add a ups start control line to the appropriate file(s) in the 
$PRODUCTS/.upsfiles/startup directory.

4) Add a ups stop control line to the appropriate file(s) in the 
$PRODUCTS/.upsfiles/shutdown directory.

When the system is restarted, your process should start running on the nodes you’ve 
designated.

14.3  Disabling UPS Automatic Start/Stop of 
Processes

For a Single Product

To disable automatic start and stop for a single product, just remove or comment out the 
corresponding lines in the <node>.products and <flavor>.products files.  



Automatic UPS Product Startup and Shutdown 14-5

Disable Feature in UPS

To disable the UPS automatic start and stop mechanism at boot time and shutdown:

• Remove (or rename) the file ups_startup from the 
$PRODUCTS/.upsfiles/startup directory and the file ups_shutdown from 
the $PRODUCTS/.upsfiles/shutdown directory.

• Remove (or rename) all links as set in the ups script (e.g., /etc/rc2.d/S99ups 
and /etc/rc0.d/K01ups for IRIX) to the OS-specific script in the system boot 
area that calls the ups_startup and ups_shutdown scripts.

• Edit, remove or rename the above-mentioned OS-specific script (e.g., 
/etc/init.d/ups for IRIX).

• Empty, remove or rename the $PRODUCTS/.upsfiles/startup and 
$PRODUCTS/.upsfiles/shutdown directories.

14.4  A Summary of the UPS Automatic 
Start-up Process

Since so many different files and directories have similar names, it can be difficult to keep 
track of the role each plays.  The process which takes place at system start-up when automatic 
start and stop are enabled can be summarized as follows:

1)  At boot time, the link in the system’s start-up area (e.g., /etc/rc3.d/S99ups for 
SunOS) points to the ups file (in the directory appropriate for the flavor) which runs 
/path/to/ups_database/.upsfiles/startup/ups_startup.

2) $PRODUCTS/.upsfiles/startup/ups_startup runs the appropriate 
$PRODUCTS/.upsfiles/startup/<node>.products and/or 
$PRODUCTS/.upsfiles/startup/<flavor>.products.  

 It also runs setups.[c]sh so that appropriate environment variables and aliases get 
set.

3) The <node> or <flavor>.products file in turn runs the ups start 
command.

4) ups start executes the START action in the table file of the product.

The process for automatic stop is similar.



14-6 Automatic UPS Product Startup and Shutdown 



Distribution Node Maintainer’s Guide V-1

Part V   Distribution Node Maintainer’s Guide

Chapter 20:  Product Distribution Server Configuration

This chapter describes how to configure and manage a UPS product 
distribution node.  It was written with the assumption that the reader who is 
setting up a distribution server has appropriate system privileges and 
sufficient administrative experience to create accounts, change network 
services configurations, and so on.

Chapter 21:  Configuration of the fnkits Product Distribution Node

This chapter describes the UPS/UPD configuration on the Computing 
Division’s central product distribution node, fnkits.fnal.gov.  Information is 
provided for both the KITS distribution database and the server’s local 
database.



V-2 Distribution Node Maintainer’s Guide 



Product Distribution Server Configuration 20-1

Chapter 20:   Product Distribution Server 

Configuration

This chapter describes how to configure and manage a UPS product distribution node.  It was 
written with the assumption that the reader who is setting up a distribution server has 
appropriate system privileges and sufficient administrative experience to create accounts, 
change network services configurations, and so on.

The Computing Division’s primary distribution node at Fermilab is fnkits.fnal.gov.  It is used in 
examples throughout this chapter, but the chapter is intended to be a general reference, and the 
specifics of the fnkits configuration are detailed in Chapter 21:  Configuration of the fnkits 
Product Distribution Node.

Distribution servers like fnkits.fnal.gov provide a convenient central repository for product 
installations, but setting them up properly takes a bit of effort.  An FTP server, a Web server, 
and the UPD configuration file (described in Chapter 31:  The UPD Configuration File) on the 
server need to work together to create the right environment.  This is especially important if 
restricted access to certain products is needed (e.g., proprietary products, or products that can 
only be distributed to particular systems or domains).  In addition, various guidelines need to 
be followed in order to maintain security and keep unauthorized users from gaining control of 
your distribution server.

We begin the chapter by presenting step-by-step sequences of how a product distribution 
server responds to the two most common UPD commands.  This discussion is intended to help 
you understand how all the elements of a distribution server work together to execute these and 
other UPD commands.  We hope that it helps put in context the material in the remainder of the 
chapter, which consists mostly of administration and configuration issues. 

20.1  How A Server Responds to a UPD Client 
Command

The two commands that a distribution server receives most frequently are upd 
addproduct and upd install, used to add products to the distribution database and to 
download products from the distribution database, respectively.  Here we present step-by-step 
sequences of how these two processes work.  As you read through the sequences of actions that 
follow, pay attention to which program is taking each action.



20-2 Product Distribution Server Configuration 

20.1.1  The Process for upd addproduct

The upd addproduct command is used to upload a product to a UPS product database on 
a distribution server.  It operates by making a series of network connections to the server.  All 
calls are made from the client system to the distribution server, who reports back results on the 
same data channel:

• The Web server on the distribution node is called, and a script called ups.cgi is used 
to determine if the specified product instance already exists on the distribution node.  If it 
exists, UPD on the client machine prints an error and exits.  If it doesn’t exist, the 
process continues.

• The anonymous FTP server on the distribution node is called, and the product tar file (if 
any) is transferred from the user node into /incoming.

• The Web server is called, and upd.cgi is used to call upd 
move_archive_file.  This script makes a product directory for the instance on the 
distribution node (as defined by the distribution node’s updconfig file), installs the 
tar file as ${UPS_PROD_DIR}.tar (or ${UPS_PROD_DIR}.tar.gz or 
${UPS_PROD_DIR}.zip, according to its suffix), and unwinds part of the tar file (to 
make the README file and the ups and man directories available, if present).

• The script upd.cgi reports back the database, product directory, and tar file location 
to the client upd addproduct command.

• The anonymous FTP server is called, and the product’s ups directory tar file is 
uploaded to /incoming. (If the user specified a ups directory, it gets uploaded over 
the one that was unwound from the tar file.)

• The Web server is called, and upd.cgi is used to call upd moved_ups_dir.  
This script makes a ups directory on the distribution node for the product (as defined 
by the updconfig file) and unwinds the ups directory tar file. 

• The script upd.cgi reports back the database and ups directory to the client upd 
addproduct command.

• The FTP server and Web server are similarly called to install the table file.

• Finally, the Web server is called and ups-decl.cgi is used to declare the product 
into the distribution database.

A subset of these steps is performed to execute upd modproduct or to add a product that 
has a subset of these elements (e.g., one that does not include a ups directory).

20.1.2  The Process for upd install

The upd install command is used to download a product from a distribution node UPS 
database to a user machine.  As for upd addproduct, all network connections come from 
the client system running upd install to the distribution server who reports any results 
back along that connection.

• The Web server on the distribution node is called, and ups.cgi is used to determine 
if the product instance in question exists on the server, what its dependencies are.  A call 
to the local UPS determines whether the product and its dependencies exist on the user 
node.  For the product itself and for each dependency not found on the user node, the 
remaining steps are taken:

•  The Web server is called, and ups.cgi is used to determine particular details of the 
product on the distribution node (e.g., archive file location, product root directory, ups 
directory, and so on).  If no archive file location is given, UPD manufactures a tar file 



Product Distribution Server Configuration 20-3

that should work, assuming the FTP server can make a tar file of directories on the fly.1  
The tar file gets named according to the convention: 
ftp://host/$UPS_PROD_DIR/..tar (a “.” for the path, followed by “.tar”).

•  The FTP server is used to transfer and unwind the archive file, an archive of the ups 
directory, and the table file for the product.

•  UPD declares the product on the local system.

20.2  Accounts Required for Distribution 
Server

A minimum of three separate user accounts are required for managing a distribution server.  
One of the accounts can be the normal userid of the person maintaining the configuration of the 
system.  The three accounts needed are:

• an account under which the Web server cgi scripts will run, and which will own the 
products on the distribution server; usually set to updadmin 

• an account under which the anonymous FTP server will run; usually set to ftp

• an account which can configure the administrative files for the Web server and the FTP 
server, a suggested name is wwwadm (can be any account, e.g., the maintainer’s usual 
account)

Each of these accounts has particular needs and functions, and for security reasons they should 
be distinct from one another, as described in the following sections.

20.2.1  The updadmin Account

The updadmin account (which owns the cgi scripts and the products in the distribution 
database) has the fewest requirements.  It should be usable by anyone needing to perform 
administrative functions related to the distribution node’s UPS database. It should be able to 
schedule cron jobs to perform log file cleanup, reporting, and so on.  It needs write access to 
the distribution database, the products area, and the Web server log area.

This account should not have write access to any of the Web server or FTP server 
configuration files.

20.2.2  The ftp Account

The ftp account is the home of the anonymous FTP service, and thus has the most restrictions 
on it.

The location of the ftp account’s home directory is an important decision. The distribution 
node UPS database needs to be a subdirectory of ~ftp, as do all the product roots and tar 
files for products that are to be distributed.  Very often, then, ~ftp is a whole separate file 
system. 

1. A WU-FTP compatible FTP server is used to make tar files “on the fly”.



20-4 Product Distribution Server Configuration 

Since this account hosts the anonymous FTP service, several security issues are of critical 
importance for setting it up securely.  They are summarized here from the on-line document 
http://www.cert.org/ftp/tech_tips/anonymous_ftp_config:

• The home directory ~ftp should not be owned by the ftp account.  In fact, nothing 
whatsoever should be owned by this account.  For a UPD server configuration, 
updadmin or perhaps root, would be an appropriate owner of ~ftp.

• For the command upd addproduct to work, there must be a ~ftp/incoming 
directory, writable but not readable by the ftp account.  This directory must be readable 
by the updadmin account, however.  We recommend having it owned by updadmin and 
set to mode 733.

• The anonymous FTP area ~ftp needs ~ftp/etc/passwd and 
~ftp/etc/groups files. These files should not be copies of the real system and 
group files. They should instead contain only the userids and groups of the files that will 
be encountered in the FTP area (~ftp), and should of course contain no passwords.

• The ~ftp/bin area should contain only ls, tar, gzip, and gunzip.  The 
~ftp/usr/lib area needs sufficient shared libraries to let these run.  You can use 
chroot to test that the command runs (as in chroot ~ftp /bin/ls -l which 
will run the ~ftp/bin/ls command under the “chrooted” environment in which the 
FTP server will be living).

The FTP home area will be accessed via two separate avenues. The Web server will access it 
via its full pathname, ~ftp, but the FTP server accesses this area via a chroot command. 
Because of these different access methods, the ftp account needs some symbolic links such that 
something chrooted to ~ftp still finds files if the expanded ~ftp pathname is used.  For 
example, if ~ftp is /home/ftp, then you should have symbolic links for both directory 
components: home and ftp.  For example, when you run

% ls -l ~ftp

you should see output that contains:

ftp -> .

home -> .

...

You can create this by executing the commands:

% ln -s . ftp

% ln -s . home

This is an example of arranging things so that the FTP server and the Web server get a 
consistent view of the world, even though one uses chroot and the other one doesn’t.

20.2.3  The wwwadm Account

This account has control of the configuration files for the FTP and Web servers.  We refer to 
this account as wwwadm throughout this document, although this particular name is not 
required.  Any account can be used for this, including the regular login account of the 
distribution server administrator, or even root.  Similarly, a UNIX group could be created, and 
people in that group could be granted access to the configuration files.

The person working under this account could seriously affect the security of the distribution 
server by misconfiguring either of these services, therefore we recommend that access be 
tightly controlled.



Product Distribution Server Configuration 20-5

20.3  Web Server Configuration

The Web server on the distribution node is used for two purposes:

• to run queries on the distribution node UPS database(s)

• to request that new products added to the server be filed away and declared

It may of course also be acting as a more general purpose Web server, however this makes the 
configuration somewhat more complex (the environment for execution of the cgi scripts 
needed for the distribution node activities may need to be different than the environment for 
the other activities of the server).

If it is only performing tasks related to distribution node activities, it is reasonable for the Web 
server to run directly as the updadmin account.  Then all of its cgi scripts, etc. will be run as 
that account. If, on the other hand, other unrelated tasks are being performed on the Web 
server, steps should be taken to ensure that the UPD cgi scripts get executed as the updadmin 
account, while other activities are performed under whatever account is appropriate for them.  
Configuring the Web server to handle other tasks as well as running the UPS/UPD cgi scripts 
is beyond the scope of this document.

We recommend you use the apache product for your Web server, which you can install using 
upd install apache and tailor with ups tailor apache.  Tailor it such that it 
runs as the account updadmin, and the configuration files are owned by the administrative 
account wwwadm.

20.3.1  The cgi Scripts Used to Access Distribution Data-
base

Three UPS/UPD-related cgi scripts must reside in the Web server’s /cgi-bin area:  
ups.cgi, upd.cgi and ups-decl.cgi.  These scripts get called by some UPD 
commands, and perform the following functions:

ups.cgi determines if the product exists on the server, and what its 
dependencies are

upd.cgi installs the product on the distribution node

ups-decl.cgi declares the product into the distribution database

Access to the scripts must be restricted in order to maintain control over who can run these 
UPD commands that affect the distribution database.

These scripts are provided in the UPD product itself, in $UPD_DIR/cgi-bin.  We 
recommend that you make the Web server’s versions of these files symbolic links to the 
$UPD_DIR/cgi-bin versions. 

Note that when new versions of UPD are installed on the server, the Web server’s versions of 
these files need to be manually updated!  This does not happen automatically because the UPD 
product doesn’t know where the apache product has the cgi-bin areas for its respective 
products.



20-6 Product Distribution Server Configuration 

20.3.2  Restricting Access to Distribution Database

It is critical to maintain control over the distribution database.  In order to protect the database, 
access to the UPD commands must be restricted.  This is done by restricting access to the Web 
server’s cgi scripts, especially upd.cgi and ups-decl.cgi which add, modify, and 
delete products on the distribution server when called by the UPD commands.

Host-Based Access Restriction

To limit access to these scripts, we recommend using configuration entries like the following 
in your Web access file ./conf/access.conf (relative to the Web server directory): 

<Location /cgi-bin/ups.cgi>

order deny,allow

deny from all

allow from .fnal.gov

</Location>

<Location ~ /cgi-bin/up(d|s-decl).cgi>

order deny,allow

deny from all

allow from add.products.host.1

allow from add.products.host.2

</Location>

This example allows only hosts from the fnal.gov domain to execute ups.cgi (thus 
restricting product downloads), and only the (fictional) hosts add.products.host.1 and 
add.products.host.2 to run the upd.cgi and ups-decl.cgi scripts (thus restricting 
uploads/changes to the distribution database).

Restricting Access By User-Based Authentication

It is possible to set up user-based authentication.  If the Web server prompts UPD for userid 
and password, it is configured to give the login name ${USER} and the password 
${USER}@‘hostname’.  User-based authentication can be set up in a number of ways.  One 
way is to include text like the following in your Web access file ./conf/access.conf:

<Location ~ /cgi-bin/up(d|s-decl).cgi>

Anonymous_NoUserId off

Anonymous_Authoritative on

Anonymous_MustGiveEmail on

AuthUserFile /dev/null

AuthName kitstest

AuthType basic

order deny,allow

deny from all

Anonymous maint1 maint2 maint3

allow from add.products.host.1

allow from add.products.host.2

allow from add.products.host.3

# lots more of these...

require valid-user

</Location>

This allows access to users maint1, maint2 and maint3 from the hosts listed.  The require 
valid-user line checks that the password is of the form ${USER}@‘hostname’. 

 In the future we hope to use kerberos-based authentication.  



Product Distribution Server Configuration 20-7

20.3.3  Prerequisites for Modifying the Distribution Data-
base

There are a few prerequisites in order for the Web server’s cgi scripts to run:

• UPD must be setup (the apache product in KITS has its scripts configured to setup 
UPS, perl and python when launching a Web server).

• The variable $PRODUCTS must be set to the database list for product distribution.

UPS needs to be setup because the ups.cgi script performs UPS commands, and to do so, 
the script must be able to determine the database using the $PRODUCTS path.  UPD must be 
setup so that the cgi scripts can find $UPD_DIR and the associated $UPD_USERCODE_DIR 
to find the UPD configuration. 

To ensure that these things are done for the fnkits Web server, we have added the following 
lines to its (apache) admin/start script: 

#--------------------------------------------------

# added for upd server, start upd, set products

umask 002

setup upd

PRODUCTS=/ftp/upsdb; export PRODUCTS

#--------------------------------------------------

20.3.4  Permissions on Files Created in the Distribution 
Database

Notice that the text in the start script for fnkits shown in section 20.3.3 Prerequisites for 
Modifying the Distribution Database sets the umask with which the cgi scripts will be run.  
This affects the permissions on all the files generated by any cgi script run by the Web server; 
in particular, files created in the distribution UPS database, product tar files and table files, and 
so on.

If a tighter umask than 002 is used, it tends to “turn off” permissions in UPS product 
directories, which are then not appropriately group-writable when installed on end user 
systems.

20.4  FTP Server Configuration

For the FTP server on your distribution node, we recommend the one in the wu_ftpd product, 
which is available from fnkits.  This product expects to find its configuration files in 
/etc/ftpd.  This directory needs to be made writable by your wwwadm account, or 
equivalent, and to be configured to grant access to the same groups/individuals as for your Web 
server.  We recommend that you configure the /etc/ftpd/ftpaccess file as shown 
(explanations follow the file listing):



20-8 Product Distribution Server Configuration 

class   local   real,anonymous  *.fnal.gov 

class registeredhost anonymous registered.host.1

# ... lots more of these

# --------------------------------

limit   local 100   Any

log commands anonymous,real

log transfers anonymous,real inbound,outbound

chmod no anonymous

delete no anonymous

overwrite no anonymous

rename no anonymous

umask no anonymous

# anybody can do tar and compression

compress        yes      * 

tar             yes      *

upload /ftp *           no

upload /ftp /incoming   yes updadmin upd 0640 nodirs

private yes

autogroup upd local

autogroup upd registeredhost

message /etc/welcome.msg        login

message /etc/upd.msg            login   local gupd registeredhost

message /etc/upd-was.mesg       login   wasregistered

message /etc/non-upd.msg        login   all

# ------------------------

class   remote  real,anonymous  *

This configuration accomplishes the following things:

• specifies several classes of users with class directives for local, registered 
host, and (at the end) remote; the local and registeredhost classes get 
mapped to the upd group in the autogroup lines.

• turns on logging with log directives

• restricts anonymous FTP users from doing anything dangerous, via chmod delete, 
overwrite rename and umask directives

• allows compression, and “tarring” of files with the tar and compress directives

• only allows uploads into /incoming under the ftp area (Note that this is 
redundant given the file permissions, but redundancy is sometimes good!) 

• specifies different login messages with the message directive to let users coming in 
directly by FTP know what they’re allowed to download. 

Don’t forget to recheck the account setup issues for the ftp account in section 20.2.2 The ftp 
Account.

The other FTP configuration files should be empty initially, except for ftpconversions; 
where the stock file from $WU_FTPD_DIR/examples should be sufficient.  You can add 
entries to ftpgroups later to implement proprietary-style access control on some products, 
if needed.

The FTP configuration files should be writable by the wwwadm account.



Product Distribution Server Configuration 20-9

20.5  UPD Configuration Items

There are several UPD configuration items in the ${UPD_USERCODE_DIR}/updconfig 
file that are used exclusively on product distribution servers.  These must be set properly in 
order to have a working install server.

20.5.1  Archive File Keywords and ${SUFFIX}

The special keywords are:

UNWIND_ARCHIVE_FILE the absolute path to the archive file (not unwound)

UPS_ARCHIVE_FILE the path that UPD uses to declare the archive file to UPS 
(minus ftp://<host> which gets prepended before it 
is declared1)

UNWIND_ARCHIVE_FILE and UPS_ARCHIVE_FILE are similar to other UPD 
configuration file variable pairs (see section 31.3.1 Required Locations).  The values for both 
these variables are paths that must end in the file name appended by ${SUFFIX}.   
${SUFFIX} is a read-only variable that describes the type of archive (e.g., tar, tar.gz, 
zip).  Its value comes from the UPD command line.  Including ${SUFFIX} on the end of the 
definition is mandatory; UPD cannot install a product whose archive file does not end in the 
proper suffix.2

Examples

Here are sample definitions of UNWIND_ARCHIVE_FILE and UPS_ARCHIVE_FILE:

 UNWIND_ARCHIVE_FILE="/ftp/archives/${UPS_PROD_NAME}${UPS_P
ROD_VERSION}${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}.${SUF
FIX}" (all on one line in real file)

 UPS_ARCHIVE_FILE="${UNWIND_ARCHIVE_FILE}"

UPD will then use the following path to declare the product tar file to UPS:

 ftp://<host>/ftp/archives/${UPS_PROD_NAME}${UPS_PROD_VERSI
ON}${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}.${SUFFIX}

To make UPD use an FTP server at a particular port number (e.g., 777), define 
UPS_ARCHIVE_FILE as:

 UPS_ARCHIVE_FILE=":777${UNWIND_ARCHIVE_FILE}"

1. <host> is the current -h <host> argument to upd addproduct.  It defaults 
to fnkits.fnal.gov.  
2. You could in principle use a specific suffix, e.g., “.tar” in place of ${SUFFIX} if the 
actions in the file don’t repack or compress/decompress the files.



20-10 Product Distribution Server Configuration 

20.5.2  Pre- and Postdeclare ACTIONs

As with any updconfig file, you can define pre- and/or postdeclare actions.  These are 
described in section 31.4 Pre- and Postdeclare Actions.  Briefly, they define actions for UPD 
to take just before or just after declaring a product to the database.  They can be used for a 
number of tasks on a distribution server, e.g.,

• to apply permission file changes

• to add symbolic links

• to update html index files 

In particular, when combined with use of the optionlist product, described in section 20.6.5 
Flagging Special Category Products Using Optionlist, you can cause certain products to use a 
stanza in the configuration file that sets special group access permissions on the files that have 
just been installed.  For example, the following text shows a predeclare action that makes the 
files for some product on fnkits readable only by group FNALONLY, which in combination 
with the FTP server configuration, means that only users in the .fnal.gov domain can 
access those files:

    action = predeclare

        #

        # fix group permissions

        #

        Execute("chgrp FNALONLY ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

        Execute("chmod o-rwx ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

        Execute("chmod a+r ${UNWIND_TABLE_DIR}/*.table", NO_UPS_ENV)

20.6  Administrative Tasks and Utilities

20.6.1  Reporting FTP and Web Server Activity Using Ftp-
weblog

For reporting, we recommend the ftpweblog product, which allows you to build reports 
combining FTP and Web accesses.  The apache product’s tailor script writes a statistics script, 
monthlystats, that can be modified to include calls to ftpweblog to request the FTP 
transfers for a UPD server machine.  Then, whenever monthlystats gets run, you’ll 
generate a combined report in your Web server’s log summary area.

To modify monthlystats to get this information, first change the list of logfiles 
(loglist) to include the FTP xferlog file.  Change

loglist="$accesslog $errorlog $agentlog $referlog"

to

loglist="$accesslog $errorlog $agentlog $referlog /var/log/ftpd/xferlog"



Product Distribution Server Configuration 20-11

Next, just after the call to ftpweblog that’s already there, add an extra invocation of ftpweblog 
to include the xferlog data for “today” in the summary report, e.g.,

...

mv ${thismonth} ${thismonth}.bak

totals="${thismonth}.bak"

ftpweblog                    \

-N "${title}"                \

-i ${totals}                 \

-t ftp /var/log/ftpd/xferlog \

 > ${thismonth}

...

20.6.2  Restricting Access for Uploads to Distribution 
Database

The permissions on the Web server cgi scripts control access to the upd 
add/mod/delproduct commands which modify the distribution database.  In section 
20.3.2 Restricting Access to Distribution Database we show how to modify the Web server’s 
access.conf file to allow the appropriate hosts access to upd.cgi and 
ups-decl.cgi.  After editing the file, restart the Web server on the distribution node.  To do 
this, you can enter these commands:

% su updadmin

password: (enter password) 

% ups restart apache

% exit

20.6.3  Restricting Access for Downloads from Distribu-
tion Database

In order to register particular hosts for downloading products, you need to add their hostnames 
to access files for both the Web and the FTP servers, as described in sections 20.3.2 Restricting 
Access to Distribution Database and 20.6.4 Restricting Distribution of Particular Products, 
respectively.  The FTP access file is maintained at /etc/ftpd/ftpaccess, and the Web 
access file is found relative to the Web server directory at ./conf/access.conf.  

On fnkits we use the cmd addkits script to add hosts to the appropriate files.  This script 
can be found in the $UPD_DIR/admin directory. 

20.6.4  Restricting Distribution of Particular Products

The best available mechanism for limiting distribution of particular products is via group ids, 
using the FTP server’s ability to map particular classes of clients to particular groups. By 
making a set of files under ~ftp readable by a particular group only, the FTP server 
automatically restricts access to those files, allowing access only to those clients which are 
mapped to that group.  For example, on fnkits.fnal.gov there is a group for registered users, a 
separate group for each proprietary product, and a group for on-site-only access.  Groups can 
be created as you need them.



20-12 Product Distribution Server Configuration 

Note that if you do create such groups, you must either include the updadmin account in each 
group so that it has permission to change files to these groups (via chgrp), or use a 
mechanism like cmd or sudo to allow the updadmin account to do this.

20.6.5  Flagging Special Category Products Using Option-
list

UPD supports creation and use of a special table-file-only product called optionlist on a UPD 
server.  In this table file, you can define options specific to products which may subsequently 
get installed on the server1.  UPD checks this table file automatically when executing upd 
install, upd addproduct, or upd modproduct.  optionlist provides a check in 
case a product provider forgets to flag a product as belonging to a special category.

upd install only looks for “proprietary” in the options, to see if it should prompt the user 
for account information and do SITE GROUP commands, and so on.  The  upd 
addproduct and upd modproduct commands pass any listed option(s) over to the 
upd move_table_file, etc., commands on the server side, thereby setting the listed flags 
as if they had been put on the command line with the -O option.  In other words, UPD 
effectively ignores all options except proprietary, and just passes them through to the 
UPD configuration on the server.

The optionlist product should be declared as version “only” and flavor “NULL”.  It requires 
user-defined keywords of the form _UPD_OPTS_<PRODUCT>="<option_list>" (see 
section 27.2 Keywords: Information Storage Format) defined in updconfig, and uses them 
as shown in the example below:

FILE=Table

Product=optionlist

group:

Flavor=ANY

Qualifiers=""

common:

# Proprietary products

_upd_opts_edt="proprietary"

_upd_opts_flint="proprietary"

end:

According to this table file, whenever an instance of edt or flint gets installed on the server, 
upd install gets run with the option -O proprietary.  These products will only 
match a updconfig file stanza that specifies options=proprietary.  

You can download the current fnkits optionlist table file for reference by issuing the command: 

% upd fetch -J @table_file optionlist

This gets the file optionlist_only_NULL.table. There are about 80 entries in the file 
at the time of this writing.

1. Really early versions of UPD used a proprietarylist product for proprietary products; 
the process has now been generalized to include other product types.



Product Distribution Server Configuration 20-13

20.6.6  Searching FTP Server Logfiles Using Searchlog

On fnkits we have a simple cgi script that lets users search for downloads/uploads of particular 
products in the FTP server logs.  It can be run from 
http://fnkits.fnal.gov/cgi-bin/searchlog.cgi.  The file content is shown 
here:

#!/bin/sh

# adapt the following to find your xferlogs if needed

#

logfiles="‘echo /var/adm/xferlog* /var/log/ftpd*/xferlog*‘"

echo "Content-type: text/html"

echo

if [ $# = 0 ]

then

    cat <<EOP

        <html> <head> <title> upd Downloads Search </title> </head>

        <body> <h1> upd Downloads Search </h1>

        Please enter a product and version

        <isindex> </body> </html>

EOP

else

    if [ $# != 2 ]

    then

        cat <<EOP

        <html> <head> <title> Invalid Search </title> </head>

        <body> <h1> Inalid search </h1>

        Please use your back button and enter a product and version!

        </body> </html>

EOP

    else

        cat <<EOP

        <html> <head> <title> Search Results </title> </head>

        <body> <h1> Search Results </h1>

        Search results for product $1 version $2

        <pre>

EOP

        for f in $logfiles

        do

          case $f in 

          *.gz|*.Z) gunzip < $f ;;

          *) cat $f ;;

          esac

        done 2>/dev/null | grep "$1" | grep "$2"

        cat <<EOP

        </pre> </body> </html>

EOP

    fi

fi



20-14 Product Distribution Server Configuration 

20.7  Product Distribution via CD-ROM

A CD-ROM can be used as a distribution database.  You start with a local directory tree 
containing the necessary files and products, and then, using appropriate tools, you create an 
image of this area and burn it onto a CD.  The Computing Division has created images for use 
on Linux machines.  You can obtain a CD-ROM of one of the images, use one of the images to 
create your own CD-ROM, or if none of the provided images meets your needs, you can create 
your own image and make a CD-ROM from that.

As of this writing, the procedure for creating product distribution CD-ROMs is under 
development.  We plan to create and maintain a Web page with this information at 
http://www.fnal.gov/docs/products/ups/ReferenceManual/misc/cdro
m.html.



Configuration of the fnkits Product Distribution Node 21-1

Chapter 21:   Configuration of the fnkits Product 

Distribution Node

This chapter describes the UPS/UPD configuration on the Computing Division’s central 
product distribution node, fnkits.fnal.gov.1  Information is provided for both the KITS 
distribution database and the server’s local database.

21.1  UPS Configuration for KITS Database

The KITS database on the fnkits.fnal.gov node has a fairly minimal configuration file, typical 
for distribution databases:  

• The database is configured to allow all registered nodes to read and use the products in it.

• Statistics are not collected for any products.

• Locations are defined for product instances, the UPS initialization files and the UPD 
configuration file.

For reference, we list the contents of the dbconfig file for KITS (minus the comments):

FILE = DBCONFIG

AUTHORIZED_NODES = *

PROD_DIR_PREFIX = /ftp/products

STATISTICS = 

SETUPS_DIR = /fnal/etc

UPD_USERCODE_DIR = /fnal/ups/db/.updfiles

21.2  UPS Configuration for local Product 
Database

The local database on the fnkits node is maintained at /fnal/ups/db.  The dbconfig 
file for this database is typical for databases on user nodes, where products are unwound and 
available for use.  This file happens to contain all the information that the dbconfig file for 
the KITS distribution database does, except that the product area, defined by 
PROD_DIR_PREFIX, is different.  In addition to this content, there are definitions of target 
directories for various product information files (e.g., man pages).  

1. Other names used for this server are:  fnkits, kits, kits.fnal.gov, upd, and upd.fnal.gov.



21-2 Configuration of the fnkits Product Distribution Node 

For reference, we list the contents of the dbconfig file for the local database (minus the 
comments):

FILE = DBCONFIG

AUTHORIZED_NODES = *

PROD_DIR_PREFIX = /fnal/ups

STATISTICS = 

MAN_TARGET_DIR = /fnal/ups/man

CATMAN_TARGET_DIR = /fnal/ups/catman

INFO_TARGET_DIR = /fnal/ups/Info

HTML_TARGET_DIR = /fnal/ups/htmldocs

NEWS_TARGET_DIR = /fnal/ups/news

SETUPS_DIR = /fnal/etc

UPD_USERCODE_DIR = /fnal/ups/db/.updfiles

In particular, notice that UPD_USERCODE_DIR is set to the same value in both files.  This 
indicates that the databases share a UPD configuration.

Soon after the release of this document (mid-2000), the local database on fnkits will point to its 
own UPD configuration.

21.3  UPD Configuration

21.3.1  updconfig File Organization

The UPD configuration for both the KITS distribution database (/ftp/upsdb) and the 
database used for locally installed products (/fnal/ups/db) is contained in the same file, 
${UPD_USERCODE_DIR}/updconfig.1  ${UPD_USERCODE_DIR} is defined to be 
/fnal/ups/db/.updfiles in the dbconfig files for both databases.

The dbconfig file includes several stanzas, each of which pertains to a category of 
product.  The product-matching criterion for each stanza is an option which indicates the 
category.  The categories are:  default (no option), local, fermitools, 
proprietary, fnalonly, and usonly.  For example, the GROUP: section of the 
stanza for default products is empty, the one for proprietary contains the 
options line:

group:

     options = "proprietary"

and so on.  The contents of the COMMON: sections for each category, namely the location and 
file name definitions and any actions, are listed in sections 21.3.4 Location and File Name 
Definitions and 21.3.5 Pre- and Postdeclare ACTIONS.

1. This is changing mid-2000; the local database will have a separate UPD configuration 
file.



Configuration of the fnkits Product Distribution Node 21-3

21.3.2  The Recognized Product Categories

default The default category is the most commonly used, and is for 
regular products added to the KITS database (/ftp/products 
or /ftp/KITS) for distribution to any on-site or registered 
off-site node1.  The products are set to group upd, and 
group-read-only.  No option is associated with the default.

local (This will be dropped mid-2000.)  The local category is for 
products installed (using upd install)  into the local database, 
ftp/ups/db, for use on the fnkits node itself (as opposed to those 
added to KITS for distribution).  For these products, the -O 
local option must be included in the upd install 
command.  (Used only by the fnkits system managers.) 

fermitools fermitools products are locally-developed and supported 
software packages (which are not available elsewhere, generally) 
that we make available to the public via our FermiTools program2. 
These products are installed in the KITS database, are 
world-readable, and have a symlink hierarchy under /ftp/pub.  
The /ftp/pub hierarchy has been created with the same 
structure as /ftp/KITS.

proprietary The proprietary category includes products for which 
Fermilab has a limited number of licenses.  These products are 
installed in the KITS database, and made accessible only to 
special groups.

fnalonly The fnalonly category is for products accessible only to the 
fnal.gov domain.  They are installed in the KITS database, 
set to group fnalonly, and are group-read-only.

usonly US-only (United States only) products are accessible only to U.S. 
government (.gov) and military (.mil) domains.  In general, 
these are products for which distribution to other countries is 
illegal.  They are installed in the KITS database, set to group 
usonly, and are group-read-only. 

21.3.3  Matching Product Categories to updconfig Stanzas

When adding a product belonging to any of the categories fermitools, proprietary, 
fnalonly or usonly, do not specify the corresponding option via the -O flag on the 
upd addproduct command line.  Instead, first fill out and submit the Special UPD 
Product Registration form (at http://fnkits.fnal.gov/specialprod.html) 
identifying the product and its category.  After you receive a confirmation via email, add the 
product as you would a “default” product (see Chapter 17:  Making Products Available For 
Distribution).  The option corresponding to your selected category gets set automatically in 
order to invoke the proper stanza in the updconfig file.

1. See the Product Distribution Platform Registration Request form at 
http://www.fnal.gov/cd/forms/upd_registration.html.
2. For more information on FermiTools, see http://www.fnal.gov/fermi-
tools/.



21-4 Configuration of the fnkits Product Distribution Node 

21.3.4  Location and File Name Definitions

All Product Categories (except local)

The following location and file name definitions are shared by the stanzas for the product 
categories default, usonly, fnalonly, proprietary, and fermitools:

UPS_THIS_DB = /"ftp/upsdb"

UNWIND_PROD_DIR="/ftp/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

  ${UPS_PROD_FLAVOR}/${UPS_PROD_NAME}_${UPS_PROD_VERSION}_${UPS_PROD_FLAVOR}

  ${UPS_PROD_QUALIFIERS}"

UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/ups"

UNWIND_TABLE_DIR = "/ftp/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

  ${UPS_PROD_ FLAVOR}"

UNWIND_ARCHIVE_FILE = "${UNWIND_PROD_DIR}.${SUFFIX}"

UPS_TABLE_FILE="${UPS_PROD_NAME}_${UPS_PROD_VERSION}_${UPS_PROD_FLAVOR}

  ${UPS_PROD_QUALIFIERS}.table"

UPS_TABLE_DIR = "${UNWIND_TABLE_DIR}"

UPS_PROD_DIR = "${UNWIND_PROD_DIR}"

UPS_UPS_DIR = "ups"

After the mid-2000 change, we expect a few of these values to change, as follows:

UNWIND_PROD_DIR="/ftp/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

  ${UPS_PROD_FLAVOR}/${UPS_PROD_NAME}_${UPS_PROD_VERSION}_${UPS_PROD_FLAVOR}

  ${UPS_PROD_QUALIFIERS}"

UNWIND_UPS_DIR = "${UPS_PROD_DIR}/ups"

UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

UPS_TABLE_DIR = "/ftp/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

  ${UPS_PROD_FLAVOR}"

The UPS_ARCHIVE_FILE definition varies.  Different FTP server port numbers with 
different permissions are used according to the product category.  For default, 
proprietary and fermitools the value is:

UPS_ARCHIVE_FILE = ${UNWIND_ARCHIVE_FILE}

For fnalonly, it is:

UPS_ARCHIVE_FILE = ":9021${UNWIND_ARCHIVE_FILE}"

For usonly, it is:

UPS_ARCHIVE_FILE = ":8021${UNWIND_ARCHIVE_FILE}"

local

The location and file name definitions for local products are (again, this will be in a 
separate UPD configuration file after mid-2000):

UPS_THIS_DB= "/fnal/ups/db"

UNWIND_PROD_DIR=
"/fnal/ups/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIE
RS}"

UNWIND_UPS_DIR= "${UNWIND_PROD_DIR}/ups"

UNWIND_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

UPS_TABLE_FILE= "${UPS_PROD_VERSION}.table"

UPS_PROD_DIR = "${UNWIND_PROD_DIR}"

UPS_UPS_DIR = "ups"

21.3.5  Pre- and Postdeclare ACTIONS

The stanzas for all categories of product except local include a PREDECLARE and a 
POSTDECLARE action.1



Configuration of the fnkits Product Distribution Node 21-5

• In each case, the PREDECLARE action includes a set of execute statements to 
chmod/chgrp the files to the right group id and permissions, and another set to 
symlink files under /ftp/KITS to provide the old-style (UPS/UPD v3) KITS 
hierarchy1 of KITS/Flavor/product/version.  In addition, fermitools 
includes commands to send notification email.  

• The POSTDECLARE action makes a convenience tar file of the ups directory for 
users downloading via ftp.

The execute statements in each stanza are similar, but not identical.  We first list them for 
the default case, and then list the differences for the other product categories relative to the 
default.

The stanza for local products contains no actions.

PREDECLARE Action for default Products

The PREDECLARE action for the default product category fixes group permissions:

action = predeclare

Execute("chgrp upd ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

Execute("chmod o-rwx ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

Execute("chmod a+r ${UNWIND_TABLE_DIR}/*.table", NO_UPS_ENV)

and makes old-KITS compatible hierarchy files:

Execute("test -d  /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/${UPS_PROD_VERSION} ||
mkdir -p /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/${UPS_PROD_VERSION}",
NO_UPS_ENV)

Execute("cd /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/${UPS_PROD_VERSION}; rm -f
${UPS_PROD_NAME}_${UPS_PROD_VERSION}_${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}.*",
NO_UPS_ENV)

Execute("cd /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/${UPS_PROD_VERSION};
/usr/bin/ln -fs ${UNWIND_PROD_DIR}.* . || true",NO_UPS_ENV)

PREDECLARE Action for FermiTools Products

The PREDECLARE action is the same as for the default products except for the changes 
noted here.

For fermitools, there is no Execute ("chgrp...") command.  The first chmod 
command is o+rx rather than o-rwx:

Execute("chmod o+rx ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

Also for fermitools, commands are included to send notification e-mail:

Execute("sh -c \"dir=/ftp/pub/${UPS_PROD_NAME}/${UPS_PROD_VERSION}; test -d \\\$dir ||
mkdir -p \\\$dir\"", NO_UPS_ENV)

Execute("sh -c \"dir=/ftp/pub/${UPS_PROD_NAME}/${UPS_PROD_VERSION}; cd \\\$dir;
/usr/bin/ln -sf ${UNWIND_PROD_DIR}.* .; /usr/bin/ln -sf ${UNWIND_PROD_DIR}/README .\"
|| true", NO_UPS_ENV)

Execute ("echo Fermitools product ${UPS_PROD_NAME} ${UPS_PROD_VERSION} -f
${UPS_PROD_FLAVOR} has been added to fnkits | /bin/mail fermitools_support\@fnal.gov",
NO_UPS_ENV)

1. After mid-2000, some of the functions in the PREDECLARE actions move to a com-
mon POSTDECLARE action, namely the functions that make old-KITS compatible hier-
archy files.
1. Currently nothing prunes old links or files from this hierarchy.



21-6 Configuration of the fnkits Product Distribution Node 

PREDECLARE Action for proprietary, fnalonly and usonly Products

The PREDECLARE action is the same as for the default products except for the changes 
noted here.

For proprietary products, the chgrp command changes to:

Execute("chgrp ‘echo ${UPS_PROD_NAME} | sed -e ’s/^vx.*/vx_dart/’ | tr a-z A-Z‘
${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

For fnalonly and usonly products, the group used in the chgrp command changes 
to FNALONLY and USONLY, respectively:

Execute("chgrp FNALONLY ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

and

Execute("chgrp USONLY ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

POSTDECLARE Action for All Product Categories (except local)

The POSTDECLARE action makes a ${UNWIND_PROD_DIR}.ups.tar tar file:

action = postdeclare

Execute("test -d \"${UNWIND_UPS_DIR}\" && cd ${UNWIND_UPS_DIR} && tar cf
${UNWIND_PROD_DIR}.ups.tar . || true", NO_UPS_ENV)

21.4  fnkits Server Maintenance

21.4.1  User Accounts and Group Ids

The fnkits Web and FTP server configuration files are owned by oss. 

The Web server runs as updadmin.  updadmin owns all of the FTP-served product files and the 
KITS UPS database, and therefore also the Web server logs.

Many group ids are used, see /etc/ftpd/ftpgroups on fnkits for the complete list.

21.4.2  Database and Configuration File Locations

The KITS distribution database is /ftp/upsdb. or /ftp/products...??

The local database is under /fnal/ups/db.

The Web server configuration files are maintained under the /fnal/www directory.

The FTP configuration files live under /etc/ftpd, except for usonly and fnalonly 
products which are kept under /etc/ftpd-usonly and /etc/ftpd-fnalonly, 
respectively.

“Sanitized” versions of the configuration files (with hostnames and such trimmed) are 
available at http://ftp.fnal.gov/.



Configuration of the fnkits Product Distribution Node 21-7

21.4.3  Web Server and FTP Log File Information

Logs are kept for roughly 30 days.

The Web server logs are kept in /fnal/log/www.  

The FTP logs are kept under /var/adm/ftpd, except for usonly and fnalonly 
products which are kept under /var/adm/ftpd-usonly and 
/var/adm/ftpd-fnalonly, respectively. 

The log summaries are maintained under /fnal/www/kits/html/logs, also accessible 
via http://ftp.fnal.gov/logs.  They are prepared using the product ftpweblog.



21-8 Configuration of the fnkits Product Distribution Node 



Administrator’s Reference VII-1

Part VII   Administrator’s Reference

Chapter 27:  Information Storage Format in Database and Config-
uration Files

This chapter introduces the files UPS uses for product management.  It also 
describes the format of the information storage in these files, which is in the 
format of KEYWORD=VALUE pairs.  The supported keywords are listed 
and described.

Chapter 28:  Version Files

Version files are UPS database files that contain information specific to the 
local installation and declaration of the declared product instances.  The 
contents of version files are described in this chapter.

Chapter 29:  Chain Files

UPS/UPD supports chains to product versions, and chain information is 
maintained in chain files.  In this chapter we describe chain files and how 
they interact with version files.

Chapter 30:  The UPS Configuration File

A UPS database can be configured and customized using the file 
dbconfig, described in this chapter.  It is used to define keywords which 
control quantities such as:

• which nodes can access products maintained in the database

• the directory under which products are installed

• which products will have usage statistics collected

• the directories for product man pages and Info files

• the directory containing the UPS initialization files

• the directory containing the UPD configuration file

• the UPS database version

Chapter 31:  The UPD Configuration File

UPD can be configured and customized on your system using the file 
updconfig, described in this chapter.  By providing default values for 
several variables (mostly product file and directory locations), the 
updconfig file controls where UPD installs products and miscellaneous 
product-related files.  It can also be used to define supplementary actions for 
UPD to perform when installing or updating products.



VII-2 Administrator’s Reference 

Chapter 32:  The UPP Subscription File

UPP is a layer on top of UPD that can be used to facilitate the update of products on a local 
UPS node as new versions become available on a product distribution node.  UPP is 
configured on the local node by subscription files, which we describe in this chapter.  The 
functions UPP can be configured to perform on a local node include:

• notify the client of new and updated products on a specified distribution node

• perform product installations and updates

• install/update product dependencies and resolve chains to maintain integrity of main 
product

• delete old product versions



Information Storage Format in Database and Configuration Files 27-1

Chapter 27:   Information Storage Format in 

Database and Configuration Files

This chapter introduces the files UPS/UPD uses for database and product management.  It also 
describes the format of the information storage in these files, which is in the form of 
KEYWORD=VALUE pairs.  The supported keywords are listed and described.

Most of the time, product installers and UPS database managers can get all the information 
they need about a product or about the contents of a database via the ups list [-K 
<keywordList>] command output (described in section 22.11 ups list), which is fairly 
easy to interpret.  However, it’s helpful to understand the database files when dealing with 
complex situations.  The keywords described in this chapter which appear in the database files 
also appear in the ups list -l output.

27.1  Overview of File Types

The information that UPS needs in order to configure and manage a database and to identify, 
locate, and retrieve product instances resides in a set of ASCII files in the UPS database.  The 
information that UPD needs for installing products also resides there.  The files used for these 
purposes include:

• Version files tell UPS where to find all the files associated with a particular version of a 
product on the local system, and contain some other information specific to the local 
installation of the product.  They are generally named according to the scheme 
vx_y.version, e.g., v1_0.version.  These are described in Chapter 28:  Version 
Files.

• Chain files are optional and contain pointers to version files, thus providing convenient 
access to particular product versions on the local system.    They are generally named 
according to the scheme chainname.chain, e.g., current.chain.  These are 
described in Chapter 29:  Chain Files.

• The UPS database configuration file defines things such as which nodes can access 
products maintained in the database, and which directories house products, man pages, 
UPS initialization files, the UPD configuration file, and so on.  It is described in Chapter 
30:  The UPS Configuration File.

• The UPD configuration file controls where UPD installs products and miscellaneous 
product-related files.  It can also be used to define supplementary actions for UPD to 
perform when installing or updating products.  It is described in Chapter 31:  The UPD 
Configuration File.

These files are sometimes referred to collectively as UPS database files.  They store 
information in the format of keywords.



27-2 Information Storage Format in Database and Configuration Files 

This information storage format is also used in table files, which are provided by the product 
developer and discussed in Part VIII Developer’s Reference.  They contain product-specific, 
system-independent information.  Table files can be maintained in the database, but they are 
not constrained to reside there, and in fact usually reside under the product root directory.

27.2  Keywords:  Information Storage Format

27.2.1  What is a Keyword?

UPS/UPD utilizes a set of keywords that collectively store the information UPS/UPD requires 
for managing products.  A keyword represents a category of information used by UPS/UPD, it 
is akin to a variable.1  A keyword line in a file assigns a value to a keyword in the format 
KEYWORD = VALUE.  

The supported keywords are listed and described in the table in section 27.4 List of Supported 
Keywords.  Some of the keywords can be used in all the file types, others are restricted to 
certain file types.  A few keywords have default values.

Keywords and their values are not case-sensitive. 

27.2.2  Keyword Syntax

When two or more words are used to make up one keyword, they are generally separated by an 
underscore (_) for readability.  All the provided keywords use full words except: 

DB is used instead of DATABASE  

DIR is used instead of DIRECTORY 

PROD is used instead of PRODUCT

27.2.3  User-Defined Keywords

In addition to those listed, UPS/UPD allows user-defined keywords (where user in this context 
refers to a product developer or administrative user).  All user-defined keywords must have 
underscore (_) as the initial character.  While parsing, any unrecognized (i.e., user-defined) 
keywords are ignored by UPS, but they are preserved across rewrites of the files.

1. And in many cases a keyword has an associated read-only variable usable in functions 
in the table file and/or the updconfig file.



Information Storage Format in Database and Configuration Files 27-3

27.2.4  How UPS/UPD Sets Keyword Values

Keywords stored in the UPS database configuration file (described in Chapter 30:  The UPS 
Configuration File) and the UPD configuration file (described in Chapter 31:  The UPD 
Configuration File) are given values according to the configuration chosen when UPS/UPD 
was installed and configured.  See Chapter 13:  Bootstrapping CoreFUE for information on 
choosing values during the installation of UPS/UPD.

Keywords stored in version or chain files are set at the time that the corresponding product 
instance and/or chain is declared to the UPS database.  Those stored in table files are usually 
set by the product developer.  If a keyword is stored in both the database configuration file and 
another file, then, for the corresponding product instance(s), the value set at product or chain 
declaration overrides the one set in the database configuration file. 

27.3  Flexibility of File Syntax

The syntax of the database files is fixed but forgiving.  It is fixed in the sense that UPS 
commands automatically create the version and chain files in a particular UPS-supported 
format.  Any UPS command that modifies information in these files rewrites the file to disk 
according to the same format.  The syntax is forgiving, however, in that when you perform 
manual file updates, UPS will ignore blank lines and extra whitespace (spaces and tabs).

Comment lines can be placed anywhere in the file and must begin with a pound sign (#).  
However, if you want comments to be preserved upon rewrite, they must be the first lines in 
the file. 

27.4  List of Supported Keywords

The following table gives information about each provided keyword.  The last five columns 
indicate which database file the keyword may be used in.  The headings D, U, C, V and T refer 
to:

D Database configuration file (dbconfig)

U UPD configuration file (updconfig)

C Chain file

V Version file

T Table file



27-4 Information Storage Format in Database and Configuration Files 

 

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

D U C V T

ACTION defines an action (described in Chapter 
33:  Actions and ACTION Keyword Val-
ues), i.e., groups together a list of func-
tions associated with a command (e.g., 
ACTION=SETUP)

U T

ARCHIVE_FILE archive file name/location; used by UPD V

AUTHORIZED_NODES
Default: All nodes (*); taken 
from UPS database configu-
ration file

authorized nodes D V

CATMAN_SOURCE_DIR
Default:  under the 
${UPS_UPS_DIR}/ 
toman/catman directory

location of catman files (formatted man 
page files) included with instance

T

CATMAN_TARGET_DIR directory into which catman files are to be 
copied

D

CHAIN chain name C

COMMON: groups together actions that apply to all 
instances represented in “GROUP:”;
COMMON: is only valid within a 
GROUP:

U T

COMPILE_DIR directory in which the compile file resides V

COMPILE_FILE the name of the file containing compiled 
functions (see Chapter 37:  Use of Com-
pile Scripts in Table Files)

V

DECLARED
Default: current date and 
time

the date/time that the instance was 
declared to UPS or declared with a chain
Note: often has multiple values, one for 
each declaration (e.g., for subsequent 
chain declarations)

C V

DECLARER
Default: current user

userid of user that performed the declara-
tion
Note: often has multiple values, one for 
each declaration (e.g., for subsequent 
chain declarations)

C V

DESCRIPTION product description U C V T

END: marks the end of a “GROUP:” or “COM-
MON:”; one “END:” marker is used to 
jointly end a “GROUP:” and an included 
“COMMON:”

U T



Information Storage Format in Database and Configuration Files 27-5

FILE type of file (possible values:  DBCON-
FIG, UPDCONFIG, CHAIN, VERSION, 
TABLE)

D U C V T

FLAVOR product instance flavor
Note:  To easily accommodate flavor-neu-
tral setup functions in a table file, 
FLAVOR can take the value ANY, but 
only in a table file.

U C V T

GROUP: groups together multiple instances; all 
entries subsequent to this “GROUP:” are 
part of it until an “END:” marker is 
reached

U T

HTML_SOURCE_DIR
Default:  under the 
${UPS_UPS_DIR}/ 
tohtml directory

location of html files included with 
instance
not supported in UPS v4

T

HTML_TARGET_DIR directory into which html files are to be 
copied
not supported in UPS v4

D

INFO_SOURCE_DIR
Default:  under the 
${UPS_UPS_DIR}/ 
toInfo directory

location of Info files included with 
instance

T

INFO_TARGET_DIR directory into which Info files are to be 
copied

D

MAN_SOURCE_DIR
Default:  under the 
${UPS_UPS_DIR}/ 
toman/man directory

location of unformatted man page files 
included with instance

T

MAN_TARGET_DIR directory into which formatted man pages 
are to be copied

D

MODIFIED
Default: Current date/time

last time the associated instance was 
changed
Note: often has multiple values, one for 
each declaration/modification (e.g., for 
subsequent chain declarations)

C V

MODIFIER
Default: Current user

userid of user that modified the instance
Note: often has multiple values, one for 
each declaration/modification (e.g., for 
subsequent chain declarations)

C V

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

D U C V T



27-6 Information Storage Format in Database and Configuration Files 

NEWS_SOURCE_DIR
Default:  under the 
${UPS_UPS_DIR}/ 
tonews directory

location of news files included with 
instance
not supported in UPS v4

T

NEWS_TARGET_DIR directory into which news files are to be 
copied (for posting to a newsgroup)
not supported in UPS v4

D

ORIGIN master source file; see option -D in 
Chapter 24:  Generic Command Option 
Descriptions

V

PRODUCT product name U C V T

PROD_DIR product root directory (usually defined 
relative to PROD_DIR_PREFIX, below)

V

PROD_DIR_PREFIX product root directory prefix (area where 
all or most product instances are main-
tained)

D

QUALIFIERS additional instance specification informa-
tion often used to indicate compilation 
options used by developer
Notes: appears immediately after a FLA-
VOR in these files, and is coupled with it 
to complete the instance identification 
(see 26.2.3 Qualifiers: Use in Instance 
Matching)

U C V T

SETUPS_DIR location of setups.[c]sh files and 
other UPS initialization files

D

STATISTICS flag to record statistics for specified prod-
ucts
See 27.6.3 STATISTICS for usage infor-
mation.

D V

TABLE_DIR
Default: search path (see 
section 28.4 Determination 
of ups Directory and Table 
File Locations)

location of table file V

TABLE_FILE name of table file (relative to 
TABLE_DIR)

V

UNWIND_ARCHIVE_ 
FILE

(a UPD keyword used only on distribu-
tion server configurations) 
absolute path to directory in which to 
unwind archive file (tar file) of product

U

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

D U C V T



Information Storage Format in Database and Configuration Files 27-7

UNWIND_PROD_DIR (a UPD keyword) absolute path to direc-
tory where product gets unwound

U

UNWIND_TABLE_DIR (a UPD keyword) absolute path to direc-
tory where the table file gets unwound

U

UNWIND_UPS_DIR (a UPD keyword) absolute path to direc-
tory where the ups directory gets 
unwound

U

UPD_USERCODE_DB Database containing 
UPD_USERCODE_DIR (set internally)

UPD_USERCODE_DIR Directory where UPD configuration files 
are maintained

D

UPS_ARCHIVE_FILE (a UPD keyword used only on distribu-
tion server configurations) 
archive file (tar file) location that UPD 
specifies in
ups declare -T 
ftp://host${UPS_ARCHIVE_FILE}

U

UPS_DB_VERSION UPS database version D C V T

UPS_DIR
Default: 
${UPS_PROD_DIR}/ups 
if directory exists there

location of ups directory (if not abso-
lute path, then taken relative to 
PROD_DIR, if specified)

V

UPS_PROD_DIR (a UPD keyword) product root directory 
that UPD specifies in the ups 
declare -r option; should be defined 
relative to PROD_DIR_PREFIX for port-
ability

U

UPS_TABLE_DIR (a UPD keyword) table file directory that 
UPD specifies in the ups declare 
-M option
Normally this should not be set!  Since 
UPS_TABLE_DIR must be an absolute 
path, the declaration becomes non-porta-
ble if you set this location.

U

UPS_THIS_DB (a UPD keyword) the database into which 
UPS declares the product (i.e., the direc-
tory that UPD specifies in the ups 
declare -z option).

U

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

D U C V T



27-8 Information Storage Format in Database and Configuration Files 

27.5  Syntax for Assigning Keyword Values

• Any keyword value that has multiple values uses a colon (:) to separate the subvalues.  
The value (i.e., the list of subvalues) may be surrounded by double quotation marks 
("...").  Blanks within the double-quoted value are ignored; they are neither required 
nor prohibited.

 For example, the following are all equivalent:

 QUALIFIERS = debug:optimize 

 QUALIFIERS = "debug:optimize" 

 QUALIFIERS = "  debug: optimize" 

• Whitespace is ignored except within the keyword values for DESCRIPTION, 
DECLARER and MODIFIER  

• Leading whitespace is ignored. 

• There are no line continuation characters; the entire keyword definition or function must 
appear on a single line.

• The “at” character (@) is defined for use with the keywords COMPILE_FILE, 
PROD_DIR, UPS_DIR and TABLE_FILE.  See section 27.6 Usage Notes on Particular 
Keywords.

UPS_UPS_DIR (a UPD keyword) ups directory that 
UPD specifies in the ups declare 
-U option, taken relative to 
${UNWIND_PROD_DIR} unless an 
absolute path is given; usually defined as 
ups.

U

UPS_TABLE_FILE (a UPD keyword) table file name that 
UPD specifies in the ups declare 
-m option 

U

USER current username T

VERSION product version C V T

_UPD_OVERLAY main product name for overlaid product
Note: This keyword is user-defined from 
UPS’s point of view.  It is included here 
because it is configured and used by 
UPD.  Its use with overlaid products is 
described in section 27.6.6 
_UPD_OVERLAY.

T

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

D U C V T



Information Storage Format in Database and Configuration Files 27-9

27.6  Usage Notes on Particular Keywords

27.6.1  COMPILE_DIR, COMPILE_FILE and 
@COMPILE_FILE

COMPILE_DIR the directory in which the compile file resides (see Chapter 37:  Use 
of Compile Scripts in Table Files)

COMPILE_FILE the name of the file containing precompiled functions

@COMPILE_FILE the entire path to the file containing precompiled functions

27.6.2  PROD_DIR_PREFIX, PROD_DIR and 
@PROD_DIR

PROD_DIR_PREFIX is generally set to the root of the path shared by all the products.

PROD_DIR is the path that gets specified when the particular product instance 
is declared; it is usually (but not always) a relative path that gets 
tacked onto PROD_DIR_PREFIX.

@PROD_DIR is a shorthand to request the entire path for the directory where the 
product is installed (usually equivalent to 
PROD_DIR_PREFIX/PROD_DIR). 

If PROD_DIR_PREFIX is not defined on your system, then PROD_DIR should represent the 
entire path, in which case PROD_DIR and @PROD_DIR are identical.

Products installed prior to the upgrade to UPS v4 often reside in a different area than the newer 
products, and you may find that PROD_DIR_PREFIX is not set properly for them.

Compare these commands and their output:

% ups list -K PROD_DIR_PREFIX teledata

"/afs/fnal.gov/ups/prd"

% ups list -K PROD_DIR teledata

"teledata/v1_0/NULL"

% ups list -K @PROD_DIR teledata

"/afs/fnal.gov/ups/prd/teledata/v1_0/NULL"

27.6.3  STATISTICS

The STATISTICS keyword is provided to allow recording of the following statistics on 
product usage and UPS database access:

• Userid of person executing UPS/UPD command

• Date and time



27-10 Information Storage Format in Database and Configuration Files 

• Which command was executed (including options and arguments)

• Which product instance was selected by command

This keyword can appear in a product’s version file and/or in the UPS database configuration 
file, thus providing a great deal of flexibility in choosing which products/instances to monitor.

Use in a Version File

When the STATISTICS keyword is present in a version file, it must be included with each 
specific instance which is to be monitored.  If the STATISTICS keyword is located before any 
FLAVOR and/or QUALIFIERS keywords (these keywords separate out different instances), 
then it is ignored.  In a version file, this keyword should have no value assigned.

Use in a Database Configuration File

When the STATISTICS keyword appears in the database configuration file, it needs a value.  
(If it has no value, it is ignored.)  Its value is a colon-separated list of the products (name only) 
on which to record statistics (e.g., STATISTICS = "tcl:tk:cern").  The value * 
(asterisk) indicates that statistics are to be gathered on all products in the database.

Statistics Output

For a given product being monitored, statistics data for the product get recorded in a file whose 
name is the same as the product.  If the product has dependencies, data also get recorded for 
them in their own product-specific files, and the data include the parent product name and 
version number.  The data get recorded only when the UPS/UPD command in question has 
succeeded (i.e., when the temporary file has been created, but not yet sourced).

The statistics output files for all the monitored products and their dependencies reside in a 
special directory associated with the UPS database, namely 
$PRODUCTS/.upsfiles/statistics.  This makes it easy to determine which products 
are being monitored, and only one directory needs to be made world-writable. 

As an example of the statistics data that get recorded, let’s look at the tcl product.  It is a 
dependency of tk.  Data that are recorded when an instance of tcl is accessed independently 
look like this:

"tcl" "v8_0" "IRIX" "" "" "user1" "2000-03-18 15.22.36 GMT" "setup"

Data that are recorded for tcl when an instance of tk is accessed look like this:

"tcl" "v8_0" "IRIX" "" "" "user1" "2000-03-18 15.22.36 GMT" "setupRequired tk v8_0"

27.6.4  TABLE_FILE and @TABLE_FILE

TABLE_FILE represents only the name of the table file, not its path.  @TABLE_FILE is the 
entire path for the table file.  Compare these commands and their output:

% ups list -Ktable_file teledata

"v1_0.table"

% ups list -K@table_file teledata

"/afs/fnal.gov/ups/db/teledata/v1_0.table"

See section 28.4 Determination of ups Directory and Table File Locations for information on 
how UPS determines the table file directory.



Information Storage Format in Database and Configuration Files 27-11

27.6.5  UPS_DIR and @UPS_DIR

UPS_DIR represents the location of the product’s ups directory.  If it is not an absolute path, 
then it is taken relative to @PROD_DIR (as shown in the example below).  @UPS_DIR is the 
absolute path.  Compare these commands and their output:

% ups list -K @PROD_DIR teledata

"/afs/fnal.gov/ups/prd/teledata/v1_0/NULL"

% ups list -Kups_dir teledata

"ups"

% ups list -K@ups_dir teledata

"/afs/fnal.gov/ups/prd/teledata/v1_0/NULL/ups"

27.6.6   _UPD_OVERLAY

The _UPD_OVERLAY keyword defined in UPD1 is provided for inclusion in the table file of 
each overlaid product.  Overlaid products are introduced in section 1.3.7 Product Overlays and 
discussed again for developers in section 16.2.4 Overlaid Products.  _UPD_OVERLAY takes 
as its value the main product name in double quotes.  Its presence indicates that the product is 
an overlaid product maintained in the root directory of the main product listed as the keyword’s 
value.  For example, the table files for the products cern_bin, cern_ups, and cern_lib would 
contain the following keyword line:

_UPD_OVERLAY = "cern"

UPD would then use cern as the product name when determining the root directory.

1. UPS regards the _UPD_OVERLAY keyword as user-defined.



27-12 Information Storage Format in Database and Configuration Files 



Version Files 28-1

Chapter 28:   Version Files

Version files are UPS database files that contain information specific to the local installation 
and declaration of the declared product instances.  The contents of version files are described 
in this chapter.

28.1  About Version Files

The information in a version file includes (but is not limited to):

• when the instance was declared

• who declared the instance

• the product root directory of the instance

• the location of the ups directory

• the location of the table file for the instance

One version file must exist for each version of a product that is declared to the UPS database.  
For a particular version of a product, there is often a separate product instance installed for 
each flavor; and sometimes more than one per flavor if qualifiers are used.  A new version file 
is created automatically by UPS when the first instance of a new version of a product is 
declared to the UPS database via the ups declare command.  When a subsequent 
instance of the same version is declared, UPS automatically modifies the existing version file 
to include information for it.  Multiple product instances are therefore often represented in a 
single version file.

The naming convention for version files is the version number followed by .version, e.g., 
v19_34.version.  The version file must reside in the appropriate product-specific 
directory under the UPS database directory, 
$PRODUCTS/<product>/<version>.version (e.g., 
$PRODUCTS/emacs/v19_34.version).  

The information in version files is stored in keyword definitions as described in 27.2 
Keywords: Information Storage Format.  The keywords get set according to the options 
specified on the ups declare command line.  



28-2 Version Files 

28.2  Keywords used in Version Files

This is a subset of the list given in section 27.4 List of Supported Keywords. 

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

ARCHIVE_FILE archive file name/location; used by UPD

AUTHORIZED_NODES
Default: All nodes (*); taken 
from UPS database configura-
tion file

authorized nodes

COMPILE_DIR directory in which the compile file resides

COMPILE_FILE the name of the file containing compiled functions (see 
Chapter 37:  Use of Compile Scripts in Table Files)

DECLARED
Default: current date and time

the date/time that the instance was declared to UPS or 
declared with a chain
Note: often has multiple values, one for each declaration 
(e.g., for subsequent chain declarations)

DECLARER
Default: current user

userid of user that performed the declaration
Note: often has multiple values, one for each declaration 
(e.g., for subsequent chain declarations)

DESCRIPTION product description

FILE type of file (possible values:  DBCONFIG, UPDCONFIG, 
CHAIN, VERSION, TABLE)

FLAVOR product instance flavor
Note:  To easily accommodate flavor-neutral setup func-
tions in a table file, FLAVOR can take the value ANY, but 
only in a table file.

MODIFIED
Default: Current date/time

last time the associated instance was changed
Note: often has multiple values, one for each declara-
tion/modification (e.g., for subsequent chain declarations)

MODIFIER
Default: Current user

userid of user that modified the instance
Note: often has multiple values, one for each declara-
tion/modification (e.g., for subsequent chain declarations)

ORIGIN master source file; see option -D in Chapter 24:  Generic 
Command Option Descriptions

PRODUCT product name

PROD_DIR product root directory (usually defined relative to 
PROD_DIR_PREFIX, below)



Version Files 28-3

28.3  Version File Examples

28.3.1  Sample Version File for exmh v1_6_6

Let’s declare a new version of exmh via the command:

% ups declare -r /afs/fnal.gov/products/UNIX/exmh/v1_6_6 \    
-m exmh.table exmh v1_6_6

This example assumes the ups directory resides in its default location (directly under 
product root directory), the table file resides in a default location (see section 28.4 
Determination of ups Directory and Table File Locations) and we are using $PRODUCTS to 
determine the database (-U <upsDir>, -M <tableFileDir> and -z 
<databaseList> are unspecified).

QUALIFIERS additional instance specification information often used to 
indicate compilation options used by developer
Notes: appears immediately after a FLAVOR in these files, 
and is coupled with it to complete the instance identification 
(see 26.2.3 Qualifiers: Use in Instance Matching)

STATISTICS flag to record statistics for specified products
See section 11.8.3 Collecting Statistics on Product Usage 
for usage information.

TABLE_DIR
Default: search path (see section 
28.4 Determination of ups 
Directory and Table File Loca-
tions)

location of table file

TABLE_FILE name of table file (relative to TABLE_DIR)

UPS_DB_VERSION UPS database version

UPS_DIR
Default: 
${UPS_PROD_DIR}/ups if 
directory exists there

location of ups directory (if not absolute path, then taken 
relative to PROD_DIR, if specified)

VERSION product version

Keyword and 
Default Value (if any)

Description and 
Notes (if any)



28-4 Version Files 

Given a machine of flavor SunOS+5, this creates the following version file, named 
v1_6_6.version:

FILE = version

PRODUCT = exmh

VERSION = v1_6_6

#*************************************************

#

FLAVOR = SunOS+5

QUALIFIERS = ""

  DECLARED = 1998-03-30 21.06.59 GMT

  DECLARER = stolz

  MODIFIED = 1998-03-30 21.06.59 GMT

  MODIFIER = stolz

  PROD_DIR = /afs/fnal.gov/products/UNIX/exmh/v1_6_6

  UPS_DIR = ups

  TABLE_FILE = exmh.table

28.3.2  Sample version file for foo v2_0

Version files can contain information for multiple instances of a single version of a product.  
Here is an example for a fictional product foo v2_0.  The file below would have been created 
and modified by the series of commands:

% ups declare foo v2_0 -m v2_0.table -f IRIX -q superoptimize \ 
-r /usr/prod/IRIX/foo/v2_0s

% ups declare foo v2_0 -m v2_0.table -f OSF1 \                  
-r /usr/prod/OSF1/foo/v2_0

FILE = version

PRODUCT = foo

VERSION = v2_0

#*************************************************

#

FLAVOR = IRIX

QUALIFIERS = "superoptimize"

  DECLARER = aheavey

  DECLARED = 1998-04-15 16.37.58 GMT

  MODIFIER = aheavey

  MODIFIED = 1998-04-15 16.37.58 GMT

  PROD_DIR = /usr/prod/IRIX/foo/v2_0s

  UPS_DIR = ups

  TABLE_FILE = v2_0.table

 #----------------------------------------

 #

 FLAVOR = OSF1

 QUALIFIERS = ""

  DECLARER = aheavey

  DECLARED = 1998-04-15 16.39.58 GMT

  MODIFIER = aheavey

  MODIFIED = 1998-04-15 16.39.58 GMT

   PROD_DIR = /usr/prod/OSF1/foo/v2_0

   UPS_DIR  = ups

   TABLE_FILE = v2_0.table



Version Files 28-5

28.4  Determination of ups Directory and 
Table File Locations

In a version file, the TABLE_DIR and UPS_DIR keywords can each be specified as an 
absolute or a relative path.  When either is specified as a relative path, it is taken as relative to 
PRODUCT_DIR_PREFIX/PRODUCT_DIR1.

The table file name and directory can be specified in several ways, depending on how their 
corresponding keywords have been defined.  UPS uses the following algorithm to determine 
the table file location:

If TABLE_FILE is specified as an absolute path, then:

• The location is TABLE_FILE.

If TABLE_FILE is specified as a relative path, or simply as the filename, then:

• If TABLE_DIR is specified, the location is TABLE_DIR/TABLE_FILE.

• If TABLE_DIR is not specified, and UPS_DIR is specified, then two locations are 
searched:  first the product subdirectory in the database (e.g., 
$PRODUCTS/<product>), and second UPS_DIR.

• If neither TABLE_DIR nor UPS_DIR is specified at all, UPS will search for 
TABLE_FILE under the product subdirectory in the database only.

1. Be aware that PROD_DIR_PREFIX may not be defined; if not, PROD_DIR should be 
an absolute path.



28-6 Version Files 



Chain Files 29-1

Chapter 29:   Chain Files

UPS/UPD supports chains to product versions, and chain information is maintained in chain 
files.  In this chapter we describe chain files and how they interact with version files.

29.1  About Chain Files

Chains for a product are maintained in chain files which reside in the product-specific 
directory under the UPS database directory.  There is one chain file for each chain name, and it 
is named according to the chain name, with a suffix of .chain, e.g., current.chain.  A 
chain file is automatically created by UPS the first time an instance of a product is declared 
with some chain.  When any other instances of the same product (regardless of version) get 
declared with the same chain, one of two things happens: 

• a new entry is created in the same chain file, or

• if an entry with the same flavor and qualifiers already exists, the pre-existing entry gets 
unchained and the new one is chained in its place.

Chain files get created and modified via the ups declare <chainFlag> command.  A 
chain file’s contents are simply a formatted list of the product instances that were declared with 
that chain, where each product instance is specified via a set of keywords.  When a chain is 
used in a UPS/UPD command, UPS looks in the corresponding chain file to match the 
instance and thus locate the appropriate version file.  As discussed in section 26.2 Instance 
Matching within Selected Database, the version file entry locates the product root directory 
and table file to retrieve the instance.

In UPS/UPD commands, the command line option associated with a particular chain can be 
used in specifying the product instance to match.  Using chains is optional, but recommended.  
Both chained and unchained instances of a product may be declared to UPS; the user can still 
retrieve any instance, chained or not, by specifying its version number.



29-2 Chain Files 

29.2  Keywords Used in Chain Files

This is a subset of the list given in section 27.4 List of Supported Keywords. 

Keyword and 
Default Value (if any)

Description and 
Notes (if any)

CHAIN chain name

DECLARED
Default: current date and time

the date/time that the instance was declared to UPS or 
declared with a chain
Note: often has multiple values, one for each declaration 
(e.g., for subsequent chain declarations)

DECLARER
Default: current user

userid of user that performed the declaration
Note: often has multiple values, one for each declaration 
(e.g., for subsequent chain declarations)

DESCRIPTION product description

FILE type of file (possible values:  DBCONFIG, UPDCONFIG, 
CHAIN, VERSION, TABLE)

FLAVOR product instance flavor
Note:  To easily accommodate flavor-neutral setup func-
tions in a table file, FLAVOR can take the value ANY, but 
only in a table file.

MODIFIED
Default: Current date/time

last time the associated instance was changed
Note: often has multiple values, one for each declara-
tion/modification (e.g., for subsequent chain declarations)

MODIFIER
Default: Current user

userid of user that modified the instance
Note: often has multiple values, one for each declara-
tion/modification (e.g., for subsequent chain declarations)

PRODUCT product name

QUALIFIERS additional instance specification information often used to 
indicate compilation options used by developer
Notes: appears immediately after a FLAVOR in these files, 
and is coupled with it to complete the instance identification 
(see 26.2.3 Qualifiers: Use in Instance Matching)

UPS_DB_VERSION UPS database version

VERSION product version



Chain Files 29-3

29.3  Chain File Examples

29.3.1  Sample chain file for exmh v1_6_6

This file points to the instance used in the version file of section 28.3.1 Sample Version File for 
exmh v1_6_6.  The file $PRODUCTS/exmh/current.chain contains the text:

FILE = chain

PRODUCT = exmh

CHAIN = current

#*************************************************

#

FLAVOR = SunOS+5

QUALIFIERS = ""

  VERSION = v1_6_6

  DECLARED = 1998-03-30 21.06.59 GMT

  DECLARER = stolz

  MODIFIED = 1998-03-30 21.06.59 GMT

  MODIFIER = stolz

If the given instance hadn’t been initially declared as current (as in the command in section 
28.3.1), then to create this chain file you would need to declare the instance current, e.g.,:

% ups declare -c exmh v1_6_6

29.3.2  Sample chain file for foo v2_0

This example illustrates the use of qualifiers.  It points to both of the instances in the version 
file for foo in section 28.3.2 Sample version file for foo v2_0.  That version file will also get 
modified when these chains are declared.  The DECLARER, DECLARED, MODIFIER and 
MODIFIED fields will include information for the chain declarations.

Making the “current” Chain Declarations

In order for this chain file to have the contents shown below, the following two commands 
need to be issued:

% ups declare -cq superoptimize -f IRIX foo v2_0

% ups declare -cf OSF1 foo v2_0

The file $PRODUCTS/foo/current.chain contains the text:

FILE = CHAIN

PRODUCT = foo

CHAIN = CURRENT

#
#----------------------------------------

#

FLAVOR = IRIX

QUALIFIERS = "superoptimize"

  VERSION = v2_0

  DECLARER = aheavey

  DECLARED = 1998-04-15 16.37.58 GMT

  MODIFIED = 1998-05-19 21.06.59 GMT

  MODIFIER = aheavey



29-4 Chain Files 

FLAVOR = OSF1

QUALIFIERS = ""

  VERSION = V2_0

  DECLARER = aheavey

  DECLARED = 1998-04-15 16.39.58 GMT

  MODIFIED = 1998-05-24 21.06.59 GMT

  MODIFIER = aheavey

Sequence of Events at Setup Time

For this example in the IRIX case, the sequence of events upon issuing the command:

% setup -q superoptimize foo

would be as follows:

1) match the FLAVOR (IRIX) and the QUALIFIERS (superoptimize) in this chain file

2) find the version (v2_0) and open the corresponding version file (v2_0.version)

3) locate the table file ($FOO_DIR/ups/v2_0.table) and open it

4) find the ACTION=SETUP line in the table file and execute the listed functions (if no 
ACTION=SETUP line is present, UPS executes the default setup functions)



The UPS Configuration File 30-1

Chapter 30:   The UPS Configuration File

A UPS database can be configured and customized using the file dbconfig, described in 
this chapter.  This file is usually maintained in the location 
$PRODUCTS/.upsfiles/dbconfig.  It is used to define keywords which control 
quantities such as:

• which nodes can access products maintained in the database

• the directory under which products are installed

• which products will have usage statistics collected

• the directories for product man pages and Info files

• the directory containing the UPS initialization files

• the directory containing the UPD configuration file

• the UPS database version

A template dbconfig file is available in $UPS_DIR/ups/dbconfig.template.

30.1  dbconfig File Organization

The dbconfig file consists of keyword definitions.  It always has as its first line:

File = dbconfig

to identify itself to the system.  The additional keywords can be in any order.

30.2  Keywords Used in dbconfig

   

Keyword Description and Notes

AUTHORIZED_NODES nodes authorized to access the database
(set value to “*” to allow all nodes access; for a list of nodes, 
separate nodes with colons) 

CATMAN_TARGET_DIR directory into which catman files are to be copied

FILE type of file (must be set to DBCONFIG)



30-2 The UPS Configuration File 

30.3  Sample dbconfig File

FILE = DBCONFIG

# all nodes can read/use the products declared in this db

AUTHORIZED_NODES = *

# all product roots are under /fnal/ups/prd

PROD_DIR_PREFIX = /fnal/ups/prd

# keep statistics about the following products:

#   (uncomment to get stats!)

# STATISTICS = ups:upd:perl

# manpages, info files, get copied here:

MAN_TARGET_DIR = /fnal/ups/man

CATMAN_TARGET_DIR = /fnal/ups/catman

# INFO_TARGET_DIR = /fnal/ups/Info

#  automatic html and news processing not yet supported

#  HTML_TARGET_DIR = /dev/null

#  NEWS_TARGET_DIR = /dev/null

HTML_TARGET_DIR directory into which html files are to be copied
Not yet supported.

INFO_TARGET_DIR directory into which Info files are to be copied

MAN_TARGET_DIR directory into which formatted man pages are to be copied

NEWS_TARGET_DIR directory into which news files are to be copied (for posting to a 
newsgroup)
Not yet supported.

PROD_DIR_PREFIX product root directory prefix (directory under which all or most 
product instances are maintained); must be an absolute path

SETUPS_DIR location of setups.[c]sh files and other UPS initialization 
files 
(note that “courtesy links” in /usr/local/etc should be 
created to point to this directory; see section 1.7.1 Initializing the 
UPS Environment)

STATISTICS flag to record statistics for specified products
(see section 27.6.3 STATISTICS for usage information)

UPD_USERCODE_DIR directory where UPD configuration file is maintained (usually 
$PRODUCTS/.updfiles/) 

UPS_DB_VERSION UPS database version

Keyword Description and Notes



The UPS Configuration File 30-3

#  setups.[c]sh scripts are copied here

#  (’courtesy links’ in /usr/local/etc should point here):

SETUPS_DIR = /fnal/ups/etc

#   upd configuration for this db are here:

UPD_USERCODE_DIR = /fnal/ups/db/.updfiles



30-4 The UPS Configuration File 



The UPD Configuration File 31-1

Chapter 31:   The UPD Configuration File

UPD can be configured and customized on your system using the file updconfig, described 
in this chapter.  This file is usually maintained in the location 
$PRODUCTS/.updfiles/updconfig.  (Its location is commonly referred to as 
$UPD_USERCODE_DIR/updconfig, where $UPD_USERCODE_DIR gets defined in the 
dbconfig file of the UPS database in which UPD is declared.)  By providing default values 
for several variables (mostly product file and directory locations), the updconfig file 
controls where UPD installs products and miscellaneous product-related files.1  It can also be 
used to define supplementary actions for UPD to perform when installing or updating 
products.  Use of the updconfig file greatly reduces the amount of information the 
installer/maintainer needs to provide to the system for each UPD operation.  A template 
updconfig file is available in $UPD_DIR/ups/updconfig.template.

Locations defined in a updconfig file may be overridden by specifying corresponding 
options on the UPD command line.

31.1  updconfig File Organization

The updconfig file always has as its first line:

File = updconfig

to identify itself to the system.  The remainder of the file consists of one or more stanzas.  Each 
stanza:

• identifies certain product instances, products or groups of products

• specifies a database on the local system in which to declare a matched product

• specifies locations on the local system in which UPD is to put a matched product and its 
related files

• (optionally) lists actions for UPS/UPD to perform either just before or just after 
declaring the matched product

A updconfig file stanza is of the form:

GROUP:

...

COMMON:

...

END:

1. In UPS/UPD versions prior to and including v4_4a, the file 
${UPD_USERCODE_DIR}/updusr.pm could be used to override the default behav-
ior of UPD.  This file is now obsolete and can be removed.



31-2 The UPD Configuration File 

The GROUP: section of the stanza contains the product matching information.  The 
COMMON: section contains the locations and actions for the matched product and its 
associated files.  END: is used to end the stanza.

31.2  Product Instance Identification and 
Matching

There are several identifiers which can be used to specify a product instance match.  When 
multiple values are listed for an identifier, the logical “or” of those values is used.  Identifiers 
which are omitted default to ANY, which means they match any product instance.  The 
following identifiers are supported: 

As an example, the following stanza identifies the product exmh, for either the flavor 
SunOS+5.5 or IRIX+6.3 and any qualifiers (omitted, therefore set to ANY by default) on 
fnkits.fnal.gov:

GROUP:

  product       = exmh

  flavor        = SunOS+5.5, IRIX+6.3

  dist_node     = fnkits.fnal.gov

COMMON:

  ...

END:

In the current implementation, the first stanza to match a given product instance is the one that 
gets used; UPD does not continue searching in the file for a “better” match.1

product product name

flavor flavor string

qualifiers qualifier string

options option (anything specified via the -O 
(uppercase -o) option in the UPD command

dist_database database path on the distribution server

dist_node node name of distribution server

1. In the future, we hope to have a more flexible configuration file parser, more in line with 
UPS table files.  We plan to make those rules upward-compatible relative to the current ones.



The UPD Configuration File 31-3

31.3  Defining Locations for Product Files

Within each stanza, file and directory locations for installing matched product instances and 
their associated files must be defined.  These locations should be defined in terms of 
UPS/UPD read-only variables.

31.3.1  Required Locations

All the locations/keywords listed in the table below are required (the last two for distribution 
nodes only).  

Note: UPS_THIS_DB, listed first, is used by UPD to determine the database in which to look 
for PROD_DIR_PREFIX (set in dbconfig, see Chapter 30:  The UPS Configuration 
File).  Several of the keywords that follow may be defined relative to its corresponding 
read-only variable ${PROD_DIR_PREFIX}. 

UPS_THIS_DB the database into which UPS declares the product (i.e., the direc-
tory that UPD specifies in the ups declare -z option).
Recommendation:  Set it to ${UPD_USERCODE_DB}, which 
is the database in which the updconfig file was found.

UPS_PROD_DIR product root directory that UPD specifies in the ups 
declare -r option; should be defined relative to 
${PROD_DIR_PREFIX} for portability

UNWIND_PROD_DIR absolute path to directory where product gets unwound
In most cases, it’s 
${PROD_DIR_PREFIX}/${UPS_PROD_DIR}, however in 
AFS and some NFS mounting configurations, products are often 
unwound and declared in different locations (see section 8.3 
Installing Products into AFS Space). 

UPS_UPS_DIR ups directory that UPD specifies in the ups declare -U 
option, taken relative to ${UNWIND_PROD_DIR} unless an 
absolute path is given; usually defined as ups.

UNWIND_UPS_DIR absolute path to directory where the ups directory gets 
unwound; usually defined as 
${UNWIND_PROD_DIR}/${UPS_UPS_DIR} or 
${UNWIND_PROD_DIR}/ups.

UPS_TABLE_DIR table file directory that UPD specifies in the ups declare 
-M option
Normally this should not be set!  In some cases you may need 
to put the table file somewhere other than where UPS will auto-
matically look (namely $PROD-
UCTS/${UPS_PROD_NAME} and ${UPS_UPS_DIR}); 
however since UPS_TABLE_DIR must be an absolute path, the 
declaration becomes non-portable if you set this location.



31-4 The UPD Configuration File 

31.3.2  Read-Only Variables Usable in Location Defini-
tions

The following predefined UPS/UPD read-only variables can be used in the definition of 
locations described above.  These variables get their values from the command line and/or the 
dependency list.

Do not try to redefine these variables.  When you use these variables, always enclose them in 
curly brackets ({}) as shown in the list.

UNWIND_TABLE_DIR absolute path to directory where the table file gets unwound
Suggestion:  To maintain one table file for all flavors of a prod-
uct, put it in the database; i.e., set this to 
${UPS_THIS_DB}/${UPS_PROD_NAME}.  To maintain 
each table file under $<PRODUCT>_DIR/ups, set it to 
${UPS_UPS_DIR}.

UPS_TABLE_FILE table file name that UPD specifies in the ups declare -m 
option 
Depending on where you maintain table files, choose a naming 
convention that identifies each file adequately.  For example, if 
you maintain all product table files in one location, the filename 
should include the product name and version (e.g., 
${UPS_PROD_NAME}_${UPS_PROD_VERSION}.table); 
if each is kept under its product root directory, the product name 
is not necessary (e.g., ${UPS_PROD_VERSION}.table).

UNWIND_ARCHIVE_FILE absolute path to directory in which to unwind archive file (tar 
file) of product 
Used only on distribution server configurations.

UPS_ARCHIVE_FILE archive file (tar file) location that UPD specifies in
ups declare -T 
ftp://host${UPS_ARCHIVE_FILE} 
Used only on distribution server configurations.

${UPS_USERCODE_DB} database containing UPD configuration

${UPS_USERCODE_DIR} directory containing UPD configuration

${UPS_PROD_NAME} name of product

${UPS_PROD_FLAVOR} flavor of product

${UPS_PROD_QUALIFIERS} qualifiers of product

${UPS_BASE_FLAVOR} flavor trimmed as in ups flavor -1

${DASH_PROD_FLAVOR} flavor with non-word characters replaced by dashes; 
e.g., if {UPS_PROD_FLAVOR} is set to SunOS+5, 
then {DASH_PROD_FLAVOR} has the value 
SunOS-5.  This is used to avoid problems with 
unusual symbols in file and directory names.



The UPD Configuration File 31-5

31.3.3  Sample Location Definitions

The following partial stanza, taken from the example in section 31.5.1, shows several location 
specifications:

COMMON:

     UPS_THIS_DB  = "${UPD_USERCODE_DB}"

     UPS_PROD_DIR = "${UPS_PROD_NAME}/${UPS_PROD_VERSION}/${DASH_PROD_FLAVOR}

                     ${DASH_PROD_QUALIFIERS}" (this must be all on one line in the real file)

  UNWIND_PROD_DIR = "${PROD_DIR_PREFIX}/${UPS_PROD_DIR}"

      UPS_UPS_DIR = "ups"

   UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

#    Default (do not actually set UPS_TABLE_DIR):

#   UPS_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

 UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

   UPS_TABLE_FILE = "${UPS_PROD_VERSION}.table"

...

END:

31.4  Pre- and Postdeclare Actions

An action is a construction that identifies a UPS or user-defined operation via the ACTION 
keyword, and lists functions to perform, in addition to any internal processes, when the 
operation is executed.  An action stanza has the format:

   ACTION=<VALUE>

      <function_1>([<argument_1>] [, <argument_2>] ...)

      <function_2>([<argument_1>] [, <argument_2>] ...)

      ...

The updconfig file uses actions to define the steps UPD is to perform during an 
installation/update of the matched product instance(s).  The ACTION keyword values indicate 
when to perform the steps (before or after issuing the ups declare command), and the 
steps themselves are listed as functions under the ACTION line.  In a updconfig file, 
actions can be listed anywhere in the COMMON: part of a stanza.  

${DASH_PROD_QUALIFIERS
}

qualifier list with non-word characters replaced by 
dashes; e.g., if {UPS_PROD_QUALIFIERS} is 
qual1+qual2, then {DASH_PROD_QUALIFIERS} 
is qual1-qual2.  This is used to avoid problems 
with unusual symbols in file and directory names. 

${SUFFIX} suffix of archive file; e.g., tar, zip, etc. 
Used only on distribution server configurations.

${PROD_DIR_PREFIX} PROD_DIR_PREFIX of database, defined in UPS 
configuration file dbconfig (see Chapter 30)



31-6 The UPD Configuration File 

31.4.1  ACTION Keyword Values

Currently two action keyword values are supported for use in updconfig:

Functions are then listed after the ACTION keyword line, using the following syntax:

Action = predeclare

    function(arg,arg,...)

    function(arg,arg,...)

31.4.2  The execute Function

Currently, only the execute function is supported for use in updconfig:

execute("<command>", <UPS_ENV_FLAG>, [, <VARIABLE>])

It executes a shell-independent command and (optionally) assigns the output to an 
environment variable, <VARIABLE>.  It takes a required parameter (UPS_ENV_FLAG) 
which indicates whether to define UPS local variables.  This parameter can take the following 
values:

UPS_ENV define all local UPS environment variables before sourcing (the 
script or command relies on these being defined)

NO_UPS_ENV do not define the local UPS environment variables (the script or 
command doesn’t use them)

If the optional third argument, <VARIABLE>, is not specified, then the specified command is 
executed but the output from that command is not saved.  This command does not have to be 
shell-independent.

For example, say that you want to make group-writable the directory in which a product has 
been unwound before it is declared.  You would include the action: 

ACTION = PREDECLARE

    execute ("chmod -R g+w ${UNWIND_PROD_DIR}", NO_UPS_ENV )

predeclare Perform listed functions after product files have been unwound, but 
before the product has been declared

postdeclare Perform listed functions after product has been declared



The UPD Configuration File 31-7

31.5  Examples

31.5.1  Generic Template updconfig File

This example is taken from the template, $UPD_DIR/ups/updconfig.template 
(comments are included in the actual template file).  The template is designed to be usable as 
is, if:

• you have only one UPS database

• you want your product root hierarchy to be:

 ${PROD_DIR_PREFIX}/<product>/<version>/<flavor><qualifiers>

• you want your table files to reside in the UPS database as:

 ${UPS_THIS_DB}/<product>/<version>.table

If your requirements are different, this file is still useful as a starting point from which to make 
modifications.

File = updconfig

#

GROUP:

  product       = ANY

  flavor        = ANY

  qualifiers    = ANY

  options       = ANY

  dist_database = ANY

  dist_node     = ANY

COMMON:

     UPS_THIS_DB  = "${UPD_USERCODE_DB}"

     UPS_PROD_DIR =  "${UPS_PROD_NAME}/${UPS_PROD_VERSION}/${DASH_PROD_FLAVOR}

                      ${DASH_PROD_QUALIFIERS}" (no line break in real file)

  UNWIND_PROD_DIR = "${PROD_DIR_PREFIX}/${UPS_PROD_DIR}"

      UPS_UPS_DIR = "ups"

   UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

#    Default (do not actually set UPS_TABLE_DIR):

#   UPS_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

 UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

   UPS_TABLE_FILE = "${UPS_PROD_VERSION}.table"

#

#    Possible alternative, where the table files live

#    within the product’s ups directory.  Note,

#    in this case you ALSO should not set UPS_TABLE_DIR.

#

##  UPS_TABLE_DIR = "${UNWIND_UPS_DIR}"

#UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

# UPS_TABLE_FILE  = "${UPS_PROD_NAME}.table"

#

#  ACTION = PREDECLARE

#           add functions

#  ACTION = POSTDECLARE

#           add functions

END:



31-8 The UPD Configuration File 

31.5.2  Distribution from the fnkits Node Only

As a second example, we show the GROUP: portion of a file that specifies a particular 
distribution host.  Aside from the dist_node entry, the stanza is identical to that of the 
template updconfig file, and therefore applies to any products coming from the specified 
host, fnkits.fnal.gov.  fnkits is the central Computing Division product server, and there are 
several names for it.  All the names are all listed and delimited by colons.

File = updconfig

GROUP:

  product       = ANY

  flavor        = ANY

  qualifiers    = ANY

  options       = ANY

  dist_database = ANY

  dist_node     = fnkits:fnkits.fnal.gov:kits:kits.fnal.gov:upd:upd.fnal.gov

COMMON:

...

END:

This UPD configuration file could be expanded to include additional stanzas to accommodate 
products from other distribution nodes.

31.5.3  Customized Treatment of ups Directory and Table 
Files

In this example, the distribution node again has changed relative to the template, and this time 
there are also changes in the COMMON: section.  The distribution node is 
e007.dist.xyz.edu.  UPS_PROD_DIR is no longer defined relative to 
PROD_DIR_PREFIX, but is now placed under the /e007/base_code directory.  All the 
table files are placed in a single directory (/e007/table_files), therefore the table file 
names must include the product name in order to be identifiable.  Here they will be named 
<product>_<version>.table (defined using the corresponding variables as 
${UPS_PROD_NAME}_${UPS_PROD_VERSION}.table).

File = updconfig

GROUP:

  product       = ANY

  flavor        = ANY

  qualifiers    = ANY

  options       = ANY

  dist_database = ANY

  dist_node     = e007_dist.xyz.edu

COMMON:

      UPS_THIS_DB      = "${UPD_USERCODE_DB}"

     UPS_PROD_DIR     = "/e007/base_code/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

                        ${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}" (no line break in real file)

     UNWIND_PROD_DIR  = "${PROD_DIR_PREFIX}/${UPS_PROD_DIR}"

     UPS_UPS_DIR      = "ups"

     UNWIND_UPS_DIR   = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

     UPS_TABLE_DIR    = "/e007/table_files"

     UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

     UPS_TABLE_FILE   = "${UPS_PROD_NAME}_${UPS_PROD_VERSION}.table"

END:



The UPD Configuration File 31-9

31.5.4  Implementing Multiple Configurations

Here is an example that shows how to configure the file if more than one database and 
distribution node are used. The first section instructs UPD where to unwind products that are 
distributed from fnkits and how to declare them. The second section, with different naming 
conventions and file hierarchies, instructs UPD where to unwind and how to declare products 
obtained from the CDF distribution node cdf-kits.fnal.gov.

File = updconfig

GROUP:

  product       = ANY

  flavor        = ANY

  qualifiers    = ANY

  options       = ANY

  dist_database = ANY

  dist_node     = fnkits:fnkits.fnal.gov:kits:kits.fnal.gov:upd:upd.fnal.gov

COMMON:

 

     UPS_THIS_DB      = "${UPD_USERCODE_DB}"

     UPS_PROD_DIR     = "${UPS_PROD_NAME}/${UPS_PROD_VERSION}/${UPS_PROD_FLAVOR}

                         ${UPS_PROD_QUALIFIERS}"     (no line break in real file)

     UNWIND_PROD_DIR  = "${PROD_DIR_PREFIX}/${UPS_PROD_DIR}"

     UPS_UPS_DIR      = "ups"

     UNWIND_UPS_DIR   = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

###  UPS_TABLE_DIR    = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

     UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

     UPS_TABLE_FILE   = "${UPS_PROD_VERSION}.table"

END:

GROUP:

  product       = ANY

  flavor        = ANY

  qualifiers    = ANY

  options       = ANY

  dist_database = ANY

  dist_node     = cdf-kits.fnal.gov

COMMON:

 

     UPS_THIS_DB      = "~cdfsoft/declare"

     UPS_PROD_DIR     = "${UPS_PROD_NAME}/${UPS_PROD_VERSION}/${UPS_PROD_FLAVOR}

                         ${UPS_PROD_QUALIFIERS}"  (no line break in real file)

     UNWIND_PROD_DIR  = "/cdf/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}"

     UPS_UPS_DIR      = "ups"

     UNWIND_UPS_DIR   = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

###  UPS_TABLE_DIR    = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

     UNWIND_TABLE_DIR = "${UPS_TABLE_DIR}"

     UPS_TABLE_FILE   = "${UPS_PROD_VERSION}.table"

END:



31-10 The UPD Configuration File 

31.5.5  Sample Configuration for AFS Space Using 
ACTIONS

In AFS space, you may need to release the read-write volume before you can declare a product, 
as discussed in section 8.3 Installing Products into AFS Space.  For this you would use a 
PREDECLARE action.  You may also need to release the read-write UPS database after the 
product is declared, which can be done in a POSTDECLARE action.  These actions are shown 
in this example.

File = updconfig

 

 GROUP:

  product       = ANY

  flavor        = ANY

  qualifiers    = ANY

  options       = ANY

  dist_database = ANY

  dist_node     = ANY

COMMON:

     UPS_THIS_DB = "/afs/.fnal.gov/ups/db"

     UPS_PROD_DIR = "${UPS_PROD_NAME}/${UPS_PROD_VERSION}/${UPS_PROD_FLAVOR}

                     ${UPS_PROD_QUALIFIERS}"  (no line break in real file)

  UNWIND_PROD_DIR = "/afs/.fnal.gov/ups/${UPS_PROD_DIR}"

      UPS_UPS_DIR = "ups"

   UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/${UPS_UPS_DIR}"

 UNWIND_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

   UPS_TABLE_FILE = "${UPS_PROD_VERSION}.table"

  ACTION = PREDECLARE

    Execute("/usr/local/bin/upd_volrelease ${UNWIND_PROD_DIR}", NO_UPS_ENV)

  ACTION = POSTDECLARE

    Execute("/usr/local/bin/upd_volrelease ${UPS_THIS_DB}", NO_UPS_ENV)

END:

31.5.6  Distribution Node Configuration

For this example, we present an abridged version of the updconfig file used on fnkits.  The 
real one is fairly long and repetitive (will be shortened mid-2000), and is described in Chapter 
21:  Configuration of the fnkits Product Distribution Node

fnkits has a local database containing products destined for use on that node in addition to the 
KITS distribution database.  On fnkits, one updconfig is used for both databases (this too 
will change mid-2000).  It resides under the local database, and ${UPD_USERCODE_DIR} is 
defined accordingly in the dbconfig files for both databases.



The UPD Configuration File 31-11

The updconfig file on fnkits includes several stanzas, each of which pertains to a category 
of product.  The product-matching criterion for each stanza is an options=<option> line 
which indicates the category1.   This example shows only the stanzas used for ordinary 
distributed products (the default) and locally installed products.  The default stanza is 
identified by the absence of an option, and the local stanza is identified by the option local.

The default stanza includes a PREDECLARE and a POSTDECLARE action.  The 
PREDECLARE action contains a set of execute statements to chmod/chgrp the files 
to the right group id and permissions, and another set to symlink files under /ftp/KITS to 
provide the old-style (UPS/UPD v3) KITS hierarchy2 of 
KITS/Flavor/product/version.  The POSTDECLARE action makes a convenience 
tar file of the ups directory for users downloading via FTP.  The stanza for local 
products contains no actions.

• Many of the location definitions and functions are quite long, and are shown here on 
multiple lines for readability.  

• In the real file, each definition or function must be contained on a single line.

File=updconfig

#

group:

    # normal, ordinary products added to kits

   common:

    # actual locations of things

    UPS_THIS_DB = "/ftp/upsdb"

    UNWIND_PROD_DIR="/ftp/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

      ${UPS_PROD_FLAVOR}/${UPS_PROD_NAME}_${UPS_PROD_VERSION}_

      ${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}"

    UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/ups"

    UNWIND_TABLE_DIR = "/ftp/products/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

      ${UPS_PROD_FLAVOR}"

    UNWIND_ARCHIVE_FILE = "${UNWIND_PROD_DIR}.${SUFFIX}"

    #

    # declared values of things

    UPS_TABLE_FILE = "${UPS_PROD_NAME}_${UPS_PROD_VERSION}_${UPS_PROD_FLAVOR}

       ${UPS_PROD_QUALIFIERS}.table"

    UPS_TABLE_DIR = "${UNWIND_TABLE_DIR}"

    UPS_PROD_DIR = "${UNWIND_PROD_DIR}"

    UPS_UPS_DIR = "ups"

    UPS_ARCHIVE_FILE = "${UNWIND_ARCHIVE_FILE}"

    action = predeclare

        #

        # fix group permissions

        Execute("chgrp upd ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

        Execute("chmod o-rwx ${UNWIND_TABLE_DIR}/*", NO_UPS_ENV)

        Execute("chmod a+r ${UNWIND_TABLE_DIR}/*.table", NO_UPS_ENV)

       #

       # make old-KITS compatable hierarchy files

        

        Execute("test -d  /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/

             ${UPS_PROD_VERSION} || mkdir -p /ftp/KITS/${UPS_BASE_FLAVOR}/

             ${UPS_PROD_NAME}/${UPS_PROD_VERSION}", NO_UPS_ENV)

1. For this type of configuration, unless some automatic implementation of option-match-
ing is implemented (as is the case on fnkits), a product provider would need to include the 
appropriate option as upd addproduct -O <option> when adding the product to 
the distribution node, in order to invoke the right stanza.  The option local is an excep-
tion:  the person installing a product for local use on the distribution node would need to 
use upd install with the -O local option.  
2. Currently nothing prunes old links or files from this hierarchy.



31-12 The UPD Configuration File 

       

       Execute("cd /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/${UPS_PROD_VERSION}; 

          rm -f ${UPS_PROD_NAME}_${UPS_PROD_VERSION}_

          ${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}.*", NO_UPS_ENV)

       

       Execute("cd /ftp/KITS/${UPS_BASE_FLAVOR}/${UPS_PROD_NAME}/${UPS_PROD_VERSION};

          /usr/bin/ln -fs ${UNWIND_PROD_DIR}.* . || true",NO_UPS_ENV)

    action = postdeclare

#

# Make a xxx.ups.tar file

       Execute("test -d \"${UNWIND_UPS_DIR}\" && cd ${UNWIND_UPS_DIR} &&

         tar cf ${UNWIND_PROD_DIR}.ups.tar . || true", NO_UPS_ENV)

end:

group:

    #

    # products installed locally

    options = "local"

common:

    #

    # actual locations of things on local system

    UPS_THIS_DB = "/fnal/ups/db"

    UNWIND_PROD_DIR = "/fnal/ups/${UPS_PROD_NAME}/${UPS_PROD_VERSION}/

      ${UPS_PROD_FLAVOR}${UPS_PROD_QUALIFIERS}"

    UNWIND_UPS_DIR = "${UNWIND_PROD_DIR}/ups"

    UNWIND_TABLE_DIR = "${UPS_THIS_DB}/${UPS_PROD_NAME}"

    UPS_TABLE_FILE = "${UPS_PROD_VERSION}.table"

    #

    # declared values of things

    UPS_PROD_DIR = "${UNWIND_PROD_DIR}"

    UPS_UPS_DIR = "ups"

end:



The UPP Subscription File 32-1

Chapter 32:   The UPP Subscription File

UPP stands for UNIX Product Poll.  It is a layer on top of UPD that can be used to facilitate 
the update of products on a local UPS node as new versions become available on a product 
distribution node.  UPP is configured on the local node by subscription files, which we 
describe in this chapter.  The functions UPP can be configured to perform on a local node 
include:

• notify the client of new and updated products on a specified distribution node

• perform product installations and updates

• install/update product dependencies and resolve chains to maintain integrity of main 
product

• delete old product versions

32.1  UPP Subscription File Header

The header of the UPP subscription file consists of lines of the form:

variable = value

in which the following variables may be defined:

file Always set this to the value upp

mail_address The email address where you want command output to be sent

dist_node The node name of the product distribution node to query for 
new/updated products

newprod_notify Set to T (True) if you want to be notified of brand new 
products; otherwise, leave it out or set it to any other value 
(e.g., F)

data_dir The full path to the directory where you want UPP to maintain 
bookkeeping files.  Each subscription file must have its own 
data_dir.  data_dir must be writable when called from 
cron.



32-2 The UPP Subscription File 

32.2  Stanzas

After the header, the UPP subscription file consists of one or more stanzas, each bracketed by 
the lines begin and end.  The number of stanzas per file is not limited.  A stanza cannot 
refer to multiple products, however there can be multiple stanzas for the same product (e.g., for 
treating different instances of the same product differently).  Each stanza has three elements:

• identification of a product or particular instances of a product

• identification of the condition(s) for which you want UPP to perform the instructions 
you give it (done via an action statement)

• a list of instructions, or functions to perform, for each condition

32.2.1  Product Instance Identification

The following terms can be used for matching a new or updated product instance on the 
distribution node:

Within a stanza, all instances that match a given set of values will be operated on (in contrast to 
the standard UPS and UPD matching algorithms; see Chapter 26:  Product Instance Matching 
in UPS/UPD Commands).  You must at least specify the product name (the product name alone 
matches all instances), all further specification is optional and used to restrict the set of 
instances matched.  Typically, only product and sometimes flavor are specified.

32.2.2  Conditions and Instructions

After identifying a product instance(s) within the stanza, you need to tell UPP what 
condition(s) to look for regarding the product, and what to do when the conditions are met.  
One or more action = <value> lines can be included to set conditions, each followed 
by a list of functions to perform.

product Product name

flavor Product flavor

version Product version

qualifiers Product qualifiers

prod_dir Product root directory

chain Product chain



The UPP Subscription File 32-3

Actions

In a subscription file, the action keyword can take the following values (indicating the 
condition):

List of Functions

The functions that can be used under an action = <value> line currently take no 
arguments.  All of the behavior is assumed to be defined by the local UPD configuration 
(described in Chapter 31:  The UPD Configuration File) when UPP is invoked.

32.3  Examples

32.3.1  Sample UPP Subscription File

FILE = upp

MAIL_ADDRESS = somebody@fnal.gov

DIST_NODE = fnkits.fnal.gov

DATA_DIR = /var/adm/upp

NEWPROD_NOTIFY = T

#

# example of watching for new releases of a particular product:

#

begin

    product = xntp 

    flavor = SunOS+5

    action = newversion

       notify

end

#

newversion A new version of the product is installed on the distribution node.

<chain> The product is chained to chain, where chain can be current, test, or 
any other predefined or user-defined chain (see section 1.3.5 
Chains). 

E.g., action = current

notify Place a notice of the new product instance in the mailed output.

install Install the subscribed product via upd install.

delete Delete existing instance via ups undeclare -Y.

reget Short for: delete, then reinstall

update Update via upd update table_file:ups_dir.

resolve Run any ups declare commands as necessary to make chains 
match so that parent product and dependencies run properly together.



32-4 The UPP Subscription File 

# example of a product you want installed, but not chained, when it goes current:

#

begin

    product = ximagetools

    flavor = SunOS+5

    action = current

           notify

           install

end

#

# example of tracking kits closely:

# * when a new version comes out we notify

# * when it is declared or modified as test we reget it, assuming the product 

#   is allowed to have internal changes while in "test". We "resolve" to have it 

#   declared test here.

# * when it is declared current, we install it (which only does something if we 

#   don’t have it) and update it to catch re-issues of table files,etc.  We 

#   "resolve" to have it declared current here.

#

begin

product = exmh

flavor = SunOS+5

    action = newversion

           notify

    action = test

           notify

           reget

           resolve

    action = current

           notify

           install

           update

           resolve

end

32.3.2  A Longer Annotated Example

Here is a sample UPP subscription file with one stanza.  It is more comprehensive than a 
typical subscription file, illustrating the use of all the supported actions and functions.  
Explanations are provided line by line.

file = upp This identifies the file as a UPP subscription file.

mail_address = joe@fnal.gov Send mail notifications to joe@fnal.gov.

dist_node = fnkits.fnal.gov Use fnkits.fnal.gov (the central Computing 
Division distribution node where the KITS database 
resides) as the UPD product distribution node to 
contact

data_dir = /var/adm/upp Use /var/adm/upp as the UPP bookkeeping 
directory



The UPP Subscription File 32-5

newprod_notify = T Yes, notify me of new products appearing on the UPD 
server node (i.e., in the KITS database).

begin Begin a stanza.

    product = exmh Subscribe to exmh. In other words, perform the 
following actions on it and on its dependencies (the 
exmh flavors and versions remain unspecified in this 
example, therefore all instances are matched).

    action = newversion Define in the following lines one or more functions to 
perform when a brand new version of exmh appears in 
KITS.

        notify Send a notification message to joe@fnal.gov

        reget Remove (via ups undeclare -Y) and then 
reinstall (via upd install) the appropriate instance 
on the local node, and the necessary dependencies.

        resolve upd install has determined which ups 
declare commands need to be run so that all the 
chains match up properly for the dependencies to work; 
run these commands.

    action = current Define in the following lines one or more functions to 
perform when a version of exmh is chained to current 
in KITS.

        notify Send a notification message to joe@fnal.gov

        install Install the current instance in KITS (and its 
dependencies as necessary) on the local node

        resolve upd install has determined which ups 
declare commands need to be run so that all the 
chains match up properly for the dependencies to work; 
run these commands.

    action = deprecated Define in the following lines one or more functions to 
perform when a version of exmh gets deprecated (i.e., 
chained to a user-defined chain of “deprecated”) in 
KITS.  This is included to illustrate the use of 
user-defined chains.

        notify Send a notification message to joe@fnal.gov

        delete Delete the instance on the local node via ups 
undeclare -Y.

end End stanza. (Additional stanzas may be included in the 
same file; use begin and end to bracket each one.)



32-6 The UPP Subscription File 



Glossary GLO-1

Glossary

This glossary defines terminology as it is used in the context of UPS and UPD v4.

action
Also called a UPS action.  Actions are used in table files to group together functions that 
UPS must perform when a particular command is issued.  An action consists of an 
ACTION=VALUE keyword (e.g., ACTION=SETUP) plus any functions listed under-
neath it.

active product instance 
The product instance that is currently setup.  The active instance may be different than the 
current instance.

archive UPS database
A UPS database on a product distribution node in which the UPS product instances are 
stored in archive format (e.g., tar, gzip), available for downloading to a user node.  Also 
called a distribution database.

bootstrap
(In this manual, we discuss bootstrapping the CoreFUE product, which includes UPS, 
UPD and perl.) Install UPS/UPD on a machine on which no prior versions of these prod-
ucts are installed.

build
The process by which a distributable instance of a software product is constructed.  The 
build procedure results in a unique combination of product name, version, flavor, and 
qualifiers.  The actual process varies by product and by developer.  It can simply consist of 
a set of copy commands, or be as sophisticated as generation of executables from a master 
source library of the software.

chain
A chain is a UPS database entry (in a chain file) that points to a declared product instance, 
tagging the product instance according to its release status (e.g., current, test).  Chains 
allow users to specify the version of a product according to its status, rather than by its 
version number.   The defined chain names are: current, test, development, new, and old.  
Their corresponding options (or flags) used in commands are: -c, -t, -d, -n, -o.  
The -g <chainName> option allows definition of an arbitrary chain name.

Chains are set by the ups declare command; hence the term declare a product 
instance as current. 

chain file
Chain files reside in the product-specific directory under the UPS database directory, and 
maintain the chain information.  Chain files are named according to the chain name, and 
end with .chain, e.g., current.chain.  A chain file’s contents is simply the list of 
the product instances (specified via sets of keyword/value pairs) that have been declared 
with that chain.



GLO-2 Glossary 

cluster
For the purposes of this document, a cluster is set of CPU nodes which share one or more 
UPS databases and product areas.  Generally the nodes of a cluster also share (at least) 
login areas.

configure a product instance
For any product instance that requires configuration, an ACTION=CONFIGURE line is 
provided in its table file, with functions listed beneath it.  In UPS configuring a product 
instance means executing these functions by issuing the ups configure command 
with appropriate options.  This happens by default when a product is declared, otherwise it 
can be run manually.  The functions perform all the configuration needed for the product 
to run, minus that which requires input from the installer (see tailor a product instance and 
INSTALL_NOTE for that portion).

coreFUE
A bundle of UPS, UPD and perl, the core pieces of the Fermi UNIX Environment.

current instance (of a product)
A product instance that is declared as current in the database (i.e., to which the chain “cur-
rent” points).  The current instance of a product is the default for UPS and UPD com-
mands when no version or chain is specified.  For a given product, there may be one 
current instance each for several flavor/qualifier pairs.

daemon process
A background process that is configured to start up automatically on a system at boot time 
and to stop at shutdown.

database
See UPS database.

database configuration file
The UPS database configuration file contains system-specific information that customizes 
the UPS installation on a node or cluster.  If it exists, it must reside under the database 
directory in the file /path/to/ups_database/.upsfiles/dbconfig.

declare a product instance to UPS
The ups declare command makes a product instance known to the UPS database 
and accessible by UPS.  Declaration does not by itself make the product instance usable 
since any product requirements (and often other conditions) must also be satisfied, but 
declaring the product instance is a prerequisite for use (unless you’re using UPS products 
without a database).

declare a product instance current
Declaring a product instance as “current” essentially tags it as the default instance (when 
its flavor/qualifiers are matched).  The declaration creates a current chain file or chain file 
entry that points to the version file for the instance.  Product instances can also be declared 
as test, development, new or old, or as a user-defined chain for easy access.

declared product instance 
An instance of a product which has been declared to a UPS database.

default function
The functions (as listed in section 34.3 Function Descriptions) that a UPS command com-
pletes (in addition to its internal processes) if no corresponding ACTION=COMMAND 
keyword line is found in the matched table file, or if the function doDe-
faults([<ACTION>]) is listed under the corresponding ACTION=COMMAND 
keyword line.  Only the commands setup and unsetup actually have default func-
tions.



Glossary GLO-3

dependencies
Additional products that must be installed, declared, and setup to ensure the successful 
operation of a given product or to enable special features within it.  When a product 
instance is setup, its dependencies also get setup by default.

distribution database
A UPS database in which UPS product instances are available for distribution to user 
nodes.  A distribution database may be in archive or live format.  The default distribution 
database at Fermilab is KITS which is maintained by the Computing Division on the 
node fnkits.fnal.gov. 

distribution node
This term is used in UPD to refer to the node on which UPS products are stored and avail-
able for distribution to user nodes.  A distribution node contains a distribution UPS data-
base (can be live or archive) and a distribution products area, and runs UPS, UPD, a Web 
server and an FTP server (preferably WU-FTP).  It is sometimes called a server node.  

It is possible to maintain a distribution database on one machine running UPS and UPD 
and a Web server, and maintain the corresponding distribution products area(s) on a differ-
ent one running an FTP server, if the machines share a file system.

end user
Anyone who uses UPS products, but does not install, update, maintain, or develop them.

FermiTools
FermiTools are Fermilab-developed software packages that are believed to have general 
value to other application domains, and thus have been made publicly available in a spe-
cial subdirectory of KITS via anonymous FTP and www.  They do not require UPS.  
Installation and use instructions come with each product.

Fermi UNIX Environment (FUE)
FUE started as a project for providing a cross-department, cross-division structure for the 
proposal, discussion, design and implementation of all things that affect the user when 
operating in a UNIX environment at Fermilab.  Currently it consists of scripts and pro-
grams that form a uniform UNIX environment, standards documents, and the UPS suite of 
tools (see http://www.fnal.gov/cd/FUE/).

flavor
To indicate the operating system (OS) dependency of a product instance, we use the term 
flavor.  This extra term allows us to differentiate by operating system, and optionally OS 
version, while maintaining the same product name and version number for separate 
instances.  Some products do not require customizing for the different operating systems 
(typically those without compiled code), but most do and therefore come in several fla-
vors.  

flavor table
A list of a machine’s flavor including every level of specificity that you could use to find 
or declare a product instance.  For example, on a SunOS+5.6 machine, the complete flavor 
table reads:

      SunOS+5.6

      SunOS+5

      SunOS

      NULL

      ANY

FTP server node
As regards UPD, this node contains UPS product instances (and files associated with 
them) that may be downloaded to a user node, and it runs an FTP server.  Usually it is the 
same node as the Web server node, and called simply the server node or the distribution 
node.



GLO-4 Glossary 

FUE
See Fermi UNIX Environment.

fullFUE
A bundle of coreFUE plus the pieces which are strongly recommended for on-site sys-
tems:  systools, shells and futil.

function
A UPS-defined entity used in table files that executes an operation within an action.  The 
supported functions are listed in section 34.3 Function Descriptions.  One or more func-
tions always follow an ACTION=VALUE keyword line.  

A function is specified in a shell-independent manner, but contains enough information to 
allow it to be transformed into a sh or csh family command (e.g., sourceRe-
quired(), or execute()), or to be interpreted directly by UPS (e.g., writeCom-
pileScript()).

install a product instance
Copy a product instance to a local system from another location (usually from a distribu-
tion node) and perform the necessary steps to make it work.

INSTALL_NOTE
A file that describes procedures that the installer must perform manually to complete the 
installation of a product.  This file is provided by the product developer as needed.

instance 
See product instance.

internal processes (or internals)
The set of processes that a UPS command completes, regardless of the contents of the 
product instance’s table file.  The internal processes are driven by the command line 
parameters and options, and relevant environment variables.

keyword
Keywords are used in the UPS database files.  They are essentially parameters to which 
values must be assigned.  The supported set of keywords listed in section 27.4 List of Sup-
ported Keywords collectively contains the information UPS requires for managing a UPS 
installation and all its UPS products.  Some of the keywords can be used in all the UPS 
product management file types, others are restricted to certain file types.

keyword value
The value assigned to a keyword in one of the UPS database files.

KITS
The name of the UPS product distribution database on the central product distribution 
node at Fermilab, fnkits.fnal.gov.  The location of the KITS database is /ftp/upsdb.  
UPS products are stored in the corresponding product area, /ftp/products (sym-
linked to /ftp/KITS), as tar files, generally.  UPD commands access the KITS data-
base and products area by default.

live UPS database
A UPS database in which the UPS product instances are unwound, i.e., not stored in 
archived format (e.g., tar, gzip).

local UPS database
A live UPS database on a local node.  For user nodes, a database in which UPS product 
instances are declared and available to be accessed and used.

local user node
See user node.



Glossary GLO-5

make
The UNIX make utility is a tool for organizing and facilitating the update of executables 
or other files which are built from one or more constituent files.  See UNIX at Fermilab or 
a standard UNIX reference text for more information.

Makefile
First, see make above.  A Makefile is a blueprint that you design and that make uses to 
create or update one or more target files (usually executables) based on the most recent 
modify dates of the constituent files.  See UNIX at Fermilab or a standard UNIX reference 
text for more information.

operating system (OS)
A control program for a computer that allocates computer resources, schedules tasks and 
provides the user with a way to access the resources.  See document DR0010 in the Com-
puting Division Web pages for the latest information on supported UNIX operating sys-
tems at Fermilab.

operating system version (OS version)
Like other software, an operating system gets fixed and enhanced periodically, and is 
released by the vendor with a new version number (e.g., IRIX 5.1, IRIX 5.2).  Sometimes 
UPS products must be changed to continue to work properly under a new operating sys-
tem version.

operating system type (OS type)
The name of the basic operating system, without release number, as returned by the com-
mand ups flavor -2 (for example IRIX or SunOS).

overlay
An overlaid product gets distributed and maintained in the product root directory of its 
main product.  The set of products overlaid on a main product is collectively referred to as 
the overlay.

parent product 
A dependency’s parent product is that for which it is a dependency.  A product may have 
multiple parent products.

platform
Platform technically refers to the machine type (hardware) of a computer system.  How-
ever, since until quite recently in the UNIX world there has been a near-perfect correspon-
dence between hardware platform and OS type (e.g., Digital Alphastations run OSF1), 
sometimes platform is used loosely to refer to the OS type.  This correspondence is chang-
ing as Linux can be run on PC, Digital, Sun and IBM hardware.

process an action
UPS converts the shell-independent functions listed underneath an ACTION keyword line 
in a table file into code appropriate to the shell, and writes the output to a temporary file.  
This is call processing an action.

product
See UPS product

product developer
A person who develops and maintains software products, and makes them available for 
distribution by installing and declaring them to the KITS or other distribution database.  
Sometimes called a product maintainer.

product installer 
A person who downloads UPS products from a distribution node (through UPD, UPP or 
FTP), installs them on a local system, and declares them to a local UPS database (often 
the local system administrator acts as the product installer).



GLO-6 Glossary 

product instance 
The term product instance, or just instance, is used to represent a copy of a product, 
namely a unique combination of product name, version, flavor and qualifiers within a 
UPS database.  For a given product, multiple instances may exist in the database to allow 
users a choice of version and/or flavor/qualifier pair.  A product instance may be chained; 
hence the term “the current instance of a product”.

product name
The name of a UPS product as it appears in its UPS database files.

product root directory
The directory in which a product instance (i.e. its executables) and (optionally) its associ-
ated files reside.  The product instance generally has a directory structure of its own, start-
ing at this root directory.  Each instance of a product has a separate product root directory.

product user 
See end user.

product version
The net result of any change to an existing product is that a new version of the product is 
created; it is still the same product, but it will usually run a little differently.  The versions 
of a product are tracked by version numbers, e.g., v1_0, v1_1, etc.  UPS allows for multi-
ple versions of a given product to be accessible concurrently to end users.

PRODUCTS (or $PRODUCTS)
The environment variable that points to the UPS database(s) on your system.  If multiple 
UPS databases exist, $PRODUCTS can be reset in your login files to a colon-separated 
list of databases. 

<PRODUCT>_DIR (or $<PRODUCT>_DIR)
PRODUCT here is the name of a product in upper case (e.g., EMACS_DIR).  This is the 
environment variable that points to the product root directory of the active instance of a 
particular product; it gets set when the setup command is run.

qualifier
The product developer may include information about options used at compilation time 
(e.g., debug or optimized) or other qualifying information for easy identification of 
special compilations.  This information is declared in the form of qualifiers.  Qualifiers, 
when present, are part of the unique instance identification along with product name, ver-
sion and flavor.

read-only variable
UPS sets several read-only variables that can be used in functions in table files.  Many of 
them correspond to keywords set in the UPS configuration file.  There is another set of 
read-only variables available for use in setting location definitions in the UPD configura-
tion file.

root directory for product
See product root directory.

setup
Each installed, declared UPS product instance requires that the setup command be 
issued prior to use (unless it is a dependency of one that is already setup).  setup per-
forms the necessary operations in your login environment to make an installed, declared 
product accessible to you.  Typically, the operations include modifying environment vari-
ables or adding to your $PATH.  Any dependencies defined for the product get setup by 
default at the same time.



Glossary GLO-7

table file
Table files contain non-system-specific and non-shell-specific information that UPS uses 
for installing, initializing, and otherwise operating on product instances.  That is, informa-
tion pertinent to one or more product instances, independent of the installation machine.  
Table files are provided by the product developer as needed.

tailor a product instance
Tailoring is the aspect of the product implementation that requires input from the product 
installer (e.g., specifying the location of hardware devices for a software driver package).  
If the product requires tailoring, a file is usually supplied in the format of an interactive 
executable (script or compiled binary), and it is run by issuing the ups tailor com-
mand with appropriate options.  To tailor a product instance means to run this action, and 
hence, run the file. 

tar
The tar (tape archive) utility can create, add to, list, and retrieve files from an archive file.

tar file
A tar file is in archived format, and must be unwound for use.  UPS products are generally 
stored in KITS as tar files.  

unknown command handler
A UPS feature that allows user-defined actions (e.g., ACTION=XYZ followed by 
UPS-supported functions) in table files that can be run via a corresponding UPS-style 
command (e.g., ups xyz [<options>] <product> [<version>])

unsetup 
unsetup generally undoes the changes to the user’s software environment made by 
setup in order to make the product no longer available for use.  Any dependencies get 
deactivated automatically at the same time by default.

UPD - Unix Product Distribution
A companion product to UPS which provides the functionality for uploading/download-
ing products between local systems and product distribution servers.

UPD commands
Any of the commands supported by UPD.  They are listed and described in Chapter 23:  
UPD/UPP Command Reference.  These include commands to retrieve UPS products or 
certain individual files or directories from a distribution database, and commands to man-
age products within a distribution database.

UPP - Unix Product Poll
A layer on top of UPD that allows a client to request notification of changes in a distribu-
tion node database and to download pre-specified products.  UPP can be automated.  This 
is a useful tool for keeping abreast of changes/enhancements to your favorite products.

UPS - Unix Product Support 
UNIX Product Support (UPS) is a software support toolkit which provides a methodology 
for creating/managing all the UNIX products provided and/or supported by the Comput-
ing Division, and a uniform interface for accessing these products.  UPS is itself a product 
that must be installed on any machine that will be used to run other UPS products.

UPS has two parts:  one or more databases which function as a central repository of infor-
mation about the products, and a set of procedures/programs to manipulate the data-
base(s).

UPS action
See action.

UPS commands
Any of the commands supported by UPS to manage products in a UPS environment.  
They are listed and described in section Chapter 22: UPS Command Reference. 



GLO-8 Glossary 

UPS database
A directory that functions as a repository of information about all the installed, accessible 
UPS product instances on a system.  UPS allows multiple installed and declared instances 
of each product.  The database contains files for each product which store pointers to and 
information about the declared instances of the product.

ups directory (or ups subdirectory)
A directory that may contain miscellaneous important files for a product instance; e.g., its 
table file, scripts that the table file needs to execute, and so on.  This directory may reside 
anywhere; it often resides directly under the product instance’s root directory.  Not all 
products have ups directories.

UPS product
Software products distributed and managed by the UPS system are called UPS products.  
UPS products include Fermilab-written programs, a wide range of public domain soft-
ware, and a host of third party licensed (proprietary) products.  UPS products are available 
for distribution in the KITS database on fnkits.fnal.gov.

user node
A node from which users can run UPS products; usually contains a live local UPS data-
base and locally-installed products.

version 
For a product see product version; for an operating system see operating system version.  

version file
A version file contains system-specific information for each instance of a UPS product.  
One version file must exist in the product-specific directory under the UPS database direc-
tory for each version of a product that is declared to the UPS database.  The name of the 
version file is the version number followed by .version, e.g., v2_2.version.  

Web server node
As regards UPD, this node contains one or more distribution databases and runs a Web 
server, and coreFUE.  Usually it is the same node as the FTP server node, and called sim-
ply the server node or the distribution node.



Index IDX-1

Index

Symbols

"-?" option 2-1, 10-1
+ argument for -K option 2-3
.updfiles directory 1-6
.upsfiles directory 1-6
/etc/init.d directory 14-5
/etc/rc*.d directories 14-5
/usr/local/ area

Fermilab policy regarding use of 15-2, 15-3
@ symbol 27-8

use with keywords 22-46
_UPD_OVERLAY keyword 16-7, 27-11

description 27-8

Variables

$<PRODUCT>_DIR variable 34-18
as set during setup 22-5
description 22-5

${DASH_PROD_FLAVOR} read-only variable 31-4
${DASH_PROD_QUALIFIERS} read-only variable 31-5
${PROD_DIR_PREFIX} read-only variable 31-5
${PRODUCTS} read-only variable

comparison to PRODUCTS env variable 34-19
description 34-19

${SUFFIX} read-only variable 31-5
${UPD_USERCODE_DB} read-only variable 3-4
${UPD_USERCODE_DIR} read-only variable 3-4
${UPS_BASE_FLAVOR} read-only variable 31-4
${UPS_COMPILE} read-only variable

description 34-19
${UPS_EXTENDED} read-only variable

description 34-19
${UPS_OPTIONS} read-only variable

description 34-19
${UPS_ORIGIN} read-only variable

description 34-19
${UPS_OS_FLAVOR} read-only variable

description 34-19
${UPS_PROD_DIR} read-only variable

description 34-19
${UPS_PROD_FLAVOR} read-only variable 31-4

description 34-19
${UPS_PROD_NAME} read-only variable 31-4

description 34-19
${UPS_PROD_QUALIFIERS} read-only variable 31-4

description 34-19

${UPS_PROD_VERSION} read-only variable
description 34-19

${UPS_THIS_DB} read-only variable
description 34-19

${UPS_UPS_DIR} read-only variable
description 34-20

${UPS_USERCODE_DB} read-only variable 31-4
${UPS_USERCODE_DIR} read-only variable 31-4
${UPS_VERBOSE} read-only variable

description 34-20
$PATH variable 1-10, 2-10, 22-11
$PRODUCTS variable 1-6, 1-10, 25-4

as used in UPD commands 26-1
as used in upd install 5-2
comparison to read-only ${PRODUCTS} 34-19
for multiple databases 25-2
use in database selection 26-1
use with private database 11-9
with AFS database 12-4

$SETUP_<DIR> variable 34-18
as set during setup 22-5

$SETUP_<PRODUCT> variable
description 22-5
use with unsetup command 22-6, 22-11

$SETUP_UPS variable 1-10
$TEMPDIR variable

use with upd addproduct 17-1, 23-7
$UPS_DIR variable 1-10
$UPS_EXTENDED variable

as set by -e option 24-2
$UPS_EXTRA_DIR variable 12-5
$UPS_OPTIONS variable

as set by -O option 24-4
$UPS_SHELL variable 1-10

"@" Keywords

@COMPILE_FILE keyword 22-47, 27-9
@PROD_DIR keyword 22-48, 27-9
@TABLE_FILE keyword 22-48, 27-10
@UPS_DIR keyword 22-48, 27-11

A

access.conf file 20-11
accessing a UPS product 2-8, 22-5



IDX-2 Index

accounts
for managing distrib node 20-3
for product installation 11-1, 11-2
ftp 20-3, 20-8
separate by product category 11-2
the products account 11-1
updadmin 20-3, 20-5, 20-12, 21-6
wwwadm 20-3, 20-4, 20-7, 20-8

ACTION keyword
"unchain" names as values 33-3
chain names as values 33-3
description 27-4

detailed 31-5, 33-1
UPS command as keyword value 33-1
use in table files 34-1
user-defined values 33-3

actions
"unchain" name as keyword value 33-3
and "unactions" 33-2
called by other actions 33-4
chain name as keyword value 33-3
examples 34-18
functions used in 34-1
overview 31-5, 33-1
processing of 24-9
reference 33-1
undoing chains in table files 33-3
undoing reversible functions 33-2
UPS commands used as 33-1
use in table files 33-1
use in updconfig 31-5
use with "unknown" commands 33-3

add chain to product on distrib node 17-7, 23-33
add product to distrib node 17-3, 23-3, 23-8

using template_product 18-6
add product to KITS 17-3, 23-3, 23-8

special product registration 17-3
add table file to distrib node 17-5

update for existing product 17-6
add ups directory to distrib node

update to existing product 17-6
addAlias function

description 34-2
AFS

$PRODUCTS variable 12-4
$UPS_EXTRA_DIR variable 12-5
configuring local database 12-2
installing into local database 12-5
installing into local products area 12-4
installing product into AFS product area 8-3
local configuration options 12-1
local FUE initialization files 12-3
products requiring special privileges 12-6
providing access to AFS products 12-1
updating /usr/local/bin 12-6
upsdb_list file 12-2
using AFS UPD and installing locally 8-2
using local database with 12-1, 12-2

AFS database
use with local database 5-3

aliases defined by UPS 1-10
announcement of new⁄updated product 17-10
anonymous FTP 7-5

download files from fnkits 7-2

apache product
for distrib node web server 20-5, 20-10

apropos command 38-3
ARCHIVE_FILE keyword 22-47

as set by -T option 24-4
description 27-4, 28-2

AUTHORIZED_NODES keyword 22-47, 30-1
as set by -A option 24-1
description 27-4, 28-2

autostart
configuring UPS to allow 14-1
control files 14-3

permissions 14-4
disabling 14-5
installing product for 14-2
START action 14-3
start script example 36-4
STOP action 14-3
stop script example 36-5
TAILOR action 14-3
ups script 14-1
ups_shutdown script 14-1, 14-2
ups_startup script 14-1, 14-2

B

bin directory of product 16-1, 16-3, 16-5, 18-4, 19-1
description 15-6

bootstrapping CoreFUE
bootstrap script 13-1, 13-5
config.custom file 13-2
configurator script 13-2
customizing configuration 13-3
log file 13-5
predefined configurations

for NT 13-2
for UNIX 13-1

running the procedure 13-5
sample customization 13-4
space requirements 13-1
stage1.sh file 13-1, 13-5
stage2.sh file 13-5
user defined configurations 13-2
user-customized configuration 13-2

C

catman directory 15-7
CATMAN_SOURCE_DIR keyword 22-47

description 27-4
CATMAN_TARGET_DIR keyword 22-47, 30-1

description 27-4
CD-ROM

product distribution 20-14
setup product directly from 22-7

chain
adding product to distrib node 17-3, 23-7
as action in table files 33-3
change (on declared instance) 10-7
current 1-4
declare at product declaration 3-6, 10-2
declare to installed instance 10-4



Index IDX-3

definition 1-4
development 1-4
new 1-4
old 1-4
remove and add new 10-7
remove from instance 10-6
specification in command 25-1
test 1-4
usage 1-5
use in instance matching 26-3
user-defined 1-4

chain files 1-6, 22-79, 29-1
and product removal 10-7
creating 29-1
description 29-1
examples 29-3
information storage format 29-1
instance matching within 26-3
keywords 29-1
overview 27-1

CHAIN keyword 22-47
description 27-4, 29-2

chain names 1-5
chain options 1-5
change a chain 10-7
change product chain on distrib node 17-7
command defaults 1-8
command output formats for ups list 24-7
command syntax 1-8

description 25-1
comment solicitation INT-5
COMMON: keyword 35-3

description 27-4
use in table files 35-3
use in updconfig file 31-2

COMPILE action 37-1
compile script 37-1
COMPILE_DIR keyword 22-47, 27-9

description 27-4, 28-2
COMPILE_FILE keyword 22-47, 27-9

as set by -b option 24-1
description 27-4, 28-2

config.custom file 13-2
configurator script 13-2
configure a product instance 3-9, 22-13

in AFS space 8-5
CONFIGURE action 10-8, 22-80, 36-1
configure script 36-1

for prebuilt binaries 16-5
configuring distribution node 20-1
conventions, notational INT-3
copy a product declaration 22-19
CoreFUE

and AFS 12-1
bootstrapping 13-1
components 12-4, 12-5, 13-1
customizing configuration 13-3
local installation on AFS machine 12-4
predefined configurations

for NT 13-2
for UNIX 13-1

running the bootstrap procedure 13-5
sample bootstrap customization 13-4
space requirements 13-1
user defined configurations 13-2

courtesy links to initialization files 1-9
create a database

checklist for preparation 11-9
on machine running AFS 12-2

cron
use to automate UPP 4-3, 6-4

CURRENT action 36-3
current chain 1-4

as default 1-8
current script 36-3
CVS 17-9

use with template_product 18-8
CYGWIN

bin directory 11-8
perl version 11-7
UPS/UPD installation issues 11-7

D

database (See UPS database)
database configuration file (See UPS configuration file)
database files

chain files 29-1
included comments 27-3
keywords 27-1
location 11-6
ownership 11-3
permisisons 11-3
pointers to directories 11-6
syntax 27-3
UPD configuration file 31-1
UPP subscription file 32-1
UPS configuration file 30-1
version files 28-1

database on distrib node
file permissions 20-7
host-based access restriction 20-6
user-based access restriction 20-6

database selection algorithm 5-2, 26-1
database specification in commands 25-4
dbconfig file (See UPS configuration file)
dbconfig.template file 30-1

listing 30-2
declare a chain to an instance 3-6, 10-2, 22-21
declare a product 3-5, 10-1, 22-21

after download via FTP 3-5, 10-1
as part of installation 5-1
declare chain at same time 3-6, 10-2
node/flavor-specific functions present 10-4
specifying ups dir and table dir 3-5, 10-2
to local database 7-4

DECLARED keyword 10-6, 22-47
description 27-4, 28-2, 29-2

DECLARER keyword 10-6, 22-47
description 27-4, 28-2, 29-2

defaults for UPS/UPD commands 1-8
Also see command reference chapters

delete product component from distrib node 17-8
delete product from distrib node 17-8

using template_product 18-8
dependencies

and unsetup command 22-11
conflict resolution 35-4



IDX-4 Index

cross-database support for 1-5
database selection for install 5-3
definition 1-5
finding them for a product 2-7
list using ups depend 2-7
multiple levels of 1-5
non-UPS products 35-4
on distribution node, list using upd depend 4-5
order of product setups 35-5
setupOptional function in table file 35-4
setupRequired function in table file 35-4

dependency matching 26-2
DESCRIPTION keyword 22-47

description 27-4, 28-2, 29-2
determine if product update needed

using upd install -s 10-13
using upd update -s 10-13
using upp 10-13

development chain 1-4
use during product development 16-2

distributing UPS products
announcement policies for new products 17-10
overview 17-1
to KITS (checklist) 19-3
to KITS (using template_product) 19-3

distribution node
~ftp area 20-4
access restrictions on database

host-based 20-6
user-based 20-6

configuration and management 20-1
configure and manage 20-1
fnkits.fnal.gov 3-2, 7-2
FTP server 20-1

configuration 20-7
KITS database (on fnkits.fnal.gov) 3-2
limiting product distribution 20-11
nodes other than fnkits 7-4
option_list product description 20-12
reporting on FTP and Web accesses 20-10
response to upd addproduct command 20-2
response to UPD commands 20-1
response to upd install command 20-2
response to upd modproduct command 20-2
restrict downloads from database 20-11
restrict uploads to database 20-11
updconfig pre and postdeclare actions 20-10
user accounts 20-3
web server 20-1

configuration 20-5
doc directory 15-7
documentation for products 15-7
doDefaults function

description 34-3

E

editing database files 10-11
END: keyword 35-3

description 27-4
use in table files 35-3
use in updconfig file 31-2

envAppend function
description 34-3

environment
and usage of command options 25-4
changes made by UPS 1-10
initializing for UPS 1-9

envPrepend function
description 34-4

envRemove function
description 34-4

envSet function
description 34-5

envSetIfNotSet function
description 34-5

envUnset function
description 34-5

examples directory 15-7
exeAccess function

description 34-6
exeActionOptional function

description 34-6
use to call another action 33-4

exeActionRequired function
description 34-6
use to call another action 33-4

execute function
description 31-6, 34-7
use in dbconfig 31-6

F

Fermi UNIX Environment
initializing 1-9

FermiTools INT-2, 4-6, 7-1, 7-2, 21-3
FILE keyword 30-1

description 27-5, 28-2, 29-2
file ownership

considerations 11-3
database files 11-3
product files 11-3

file permissions
configuring UPD to set (product files) 11-2
database files 11-3
extra security 11-3
unwound tar files 11-2

file system semantics
and group ids 11-2
Berkeley 11-2
setting 11-2
System V 11-2

fileTest function
description 34-7

flavor
ANY, as used in flavor matching 26-4
definition 1-3
NULL 1-3
specification in KITS 1-3

FLAVOR keyword 22-47
description 27-5, 28-2, 29-2
value ANY 35-3

flavor levels 2-2, 24-7
flavor of machine, determining 2-1, 22-35



Index IDX-5

flavor specification
(-f, -H and number options) 1-3
use in instance matching 26-3

flavor table 24-7
definition 2-2, 22-36

flavor.products file 14-3, 14-5
permissions 14-4

fnalonly products 21-3
fnkits.fnal.gov distribution node 4-1

adding products to 23-8
anonymous FTP for downloading products 7-1, 7-2
config file locations 21-6
database location 21-6
directory hierarchy 4-6
FermiTools 4-6, 7-1, 7-2
FTP server log file 21-7
ftpgroups file 21-6
KITS database 3-2
KITS product categories 21-3
product pathnames for FTP access 4-7, 4-8
product permissions 4-6
proprietary products 4-8
registration for downloading products 3-2, 7-2
server maintenance 21-6
using FTP to download products 7-1
web server log file 21-7

formatted ups list output 22-45
FTP

declare product after download 3-5, 10-1
downloading product components 7-1
product installation 7-1, 7-2, 7-5

FTP server
access file 20-11
log file on fnkits 21-7
log searcing 20-13
on distrib node 20-1

ftpaccess file 20-7, 20-11
ftpgroups file 21-6
ftpweblog product 20-10
FUE initialization files

courtesy links to 12-3, 12-5, 12-6
for use with AFS 12-3

functions
addAlias 34-2
case (in)sensitivity of 34-1
doDefaults 34-3
envAppend 34-3
envPrepend 34-4
envRemove 34-4
envSet 34-5
envSetIfNotSet 34-5
envUnset 34-5
examples 34-18
exeAccess 34-6
exeActionOptional 34-6
exeActionRequired 34-6
execute 31-6, 34-7
fileTest 34-7
overview 34-1
pathAppend 34-8
pathPrepend 34-8
pathRemove 34-9
pathSet 34-9
preprocessing via compile script 37-1
prodDir 34-9

reference 34-1
reversible 33-2, 34-1
setupEnv 34-10
setupOptional 34-10
setupRequired 34-10
sourceCompileOpt 34-11
sourceCompileReq 34-11
sourceOptCheck 34-12
sourceOptional 34-13
sourceReqCheck 34-13
sourceRequired 34-14
to be added in future 34-17
translation into shell commands 24-9
unAlias 34-14
unProdDir 34-14
unsetupEnv 34-15
unsetupOptional 34-15
unsetupRequired 34-16
use with ACTION keyword 34-1
writeCompileScript 34-16

G

-g option for user-defined chain 1-5
groff command

ascii output 38-6
-man option 38-1
PostScript output 38-6

GROUP: keyword 35-3
description 27-5
use in table files 35-3
use in updconfig file 31-2

H

hardcoded paths problem 15-4
help on UPS/UPD commands 2-1, 10-1
help online

ups help command 22-41
html directory 15-7
HTML_SOURCE_DIR keyword 22-47

description 27-5
HTML_TARGET_DIR keyword 22-47, 30-2

description 27-5

I

include directory 15-7
independent table file 17-5
Info directory 15-7
INFO_SOURCE_DIR keyword 22-47

description 27-5
INFO_TARGET_DIR keyword 22-47, 30-2

description 27-5
init.d directory

location 14-1
initializing UPS environment 1-9

courtesy links to files 1-9



IDX-6 Index

INSTALL_NOTE file 7-1, 15-6, 19-1
configuring product 22-15
mention of node/flavor-specific functions 10-4
mention of unconfigure actions 10-8
sample 16-9

installation methods for UPS products, summary 3-1
installer accounts

choosing 11-1
file system semantics 11-2
multiple 11-1, 11-2
products account 11-1
separate by product category 11-2
setting gid 11-1, 11-2
single 11-1
UPD configuration issues 11-2

installing a product
choose whether to declare qualifiers 3-8
components to download (using FTP) 7-1
configuring 3-9
declare manually after FTP download 7-4
for development/testing 5-3
interruption during install 3-8
into AFS space 8-3
into private database 11-9
KITS product categories 17-3
KITS special product registration 17-3
local install using AFS UPD 8-2
onto distrib node 17-3
pass options to local declare 5-2
procedural checklist when using UPD 5-3
products requiring special privileges 8-1, 12-6
root privileges 12-6
table file product 17-5
tailoring 3-9, 22-67, 22-69
troubleshooting 9-1, 10-17
ups installasroot command 12-6
using FTP 7-1, 7-2, 7-4
using UPD 5-1
using UPP 6-1
with all dependencies (using UPD) 5-5
with different name than on server 3-8
with no dependencies (using UPD) 5-7
with required dependencies (using UPD) 5-7

instance
declare a chain for 10-4
definition 1-4
determine if update needed 10-13
determine instance to act upon 26-1
install and declare 5-1
specification via chain or version 25-4
specify multiple ones in command 25-3
verify integrity of 10-10

instance matching 26-1
in chain file 26-3
in table file 26-3
in updconfig file 31-2
in version file 26-3
use of flavor and qualifiers 26-4

instance selection by chain 1-4
instance specification on command line 25-4
internal command processes 24-9

K

-K option
description for use with ups list 22-46
keyword arguments 2-3, 22-46
with upd list 4-2
with ups depend or upd depend 2-8, 22-30

keywords 27-1, 28-1
case (in)sensitivity of 27-2
DECLARED 10-6
DECLARER 10-6
definition 27-2
in ups list output 2-3
list with descriptions 22-47, 27-3
list with file types 27-3
MODIFIED 10-6, 10-13
MODIFIER 10-6
overriding values 27-3
syntax 27-2, 27-8
use of @ symbol 22-46
used with -K option in ups list 2-3
user-defined 27-2

KITS 4-1
adding products to 23-8
dbconfig file 21-1
FermiTools 7-1, 21-3
fnalonly products 21-3
product categories 21-3, 23-8
product registration for special categories 21-3
proprietary products 21-3
registration 4-6, 7-2
updconfig file 21-2
updconfig pre and postdeclare actions 21-4
using FTP to download products 7-1
US-only products 21-3

KITS distribution database 17-3

L

lib directory 15-7
licensed products

permissions 11-3
link for hard-coded paths 36-2
links to initialization files 1-9
list all current products 22-49
list all fields for a product 2-6, 22-51
list dependencies on distribution node 4-5, 23-15
list product dependencies 2-7, 22-27
list products in database 2-4, 22-49
list products on distribution node 23-31

use in troubleshooting product installs 9-1
location of database files 11-6
location of product files, considerations 11-4, 11-5

M

man directory 15-7
man -k command 38-3



Index IDX-7

man page
ascii output 38-6
convert to html 38-6
determine directory for 11-6
file names 38-1
groff 38-1
information categories 38-3
location of files 38-1
nroff 38-1
nroff output file 38-5
nroff source file 16-3, 38-4
PostScript output 38-6
section numbers 38-1

MAN_SOURCE_DIR keyword 22-47
description 27-5

MAN_TARGET_DIR keyword 22-47, 30-2
description 27-5

man2html command 38-6
managing distribution node 20-1
matching product instance

in chain file 26-3
in table file 26-3
in updconfig file 31-2
in version file 26-3
use of flavor and qualifiers 26-4

MODIFIED keyword 10-6, 22-47
description 27-5, 28-2, 29-2
updating 22-71
used to determine if update needed 10-13

MODIFIER keyword 10-6, 22-47
description 27-5, 28-2, 29-2
updating 22-71

multiple databases
adding a private database 11-9
AFS and local 8-2
and your UPD configuration 3-4
configuring UPD for 31-9
database selection algorithm 26-1
default database 1-8
how UPD selects a database 5-2, 26-1
reasons for using 11-6
specifying $PRODUCTS 1-8, 25-2
support for 1-6
-z option for specifying database 24-5

N

new chain 1-4
news directory 15-7
NEWS_SOURCE_DIR keyword 22-48

description 27-6
NEWS_TARGET_DIR keyword 22-48, 30-2

description 27-6
NFS-mounted database

using local database with 12-1
NIS cluster 12-1
node.products file 14-3, 14-5

permissions 14-4
notational conventions INT-3
nroff command 38-4

for man page 16-3
-man option 38-1, 38-5

NULL flavor 1-3

number options (-0 through -3) 2-2, 22-36
usage information 25-4

O

old chain 1-4
online help

ups help command 22-41
option flags

command-specific info in reference chapters
embedded spaces in arguments 25-2
grouping in commands 25-2
invalid arguments 25-3
multiple arguments 25-2
multiple occurrences 25-3
wildcards 25-4

option usage in commands 25-4
option_list product

description 20-12
order of command line elements 25-1
ORIGIN keyword 22-48

description 27-6, 28-2
OS determination using ups flavor 2-1, 22-36
overlaid products 1-6, 16-7, 27-11
overlays 1-6, 16-7, 27-11

P

parent product determination 10-8, 22-79
parse ups list output

in perl 22-52
in sh script 22-53

pathAppend function
description 34-8

pathPrepend function
description 34-8

pathRemove function
description 34-9

pathSet function
description 34-9

perl
parse ups list output in 22-52
version for use with CYGWIN 11-7

permissions
configuring UPD to set for product files 11-2
database files 11-3
extra security 11-3
on downloaded products 3-7
on files created in distrib database 20-7
unwound tar files 11-2

pointers in database files 11-6
pre-built binary products 16-5

inserting into template_product 18-4
pre-build checklist 19-1

PROD_DIR keyword 22-48, 27-9
as set by -r option 24-4
description 27-6, 28-2

PROD_DIR_PREFIX keyword 3-4, 22-48, 27-9, 30-2
description 27-6

prodDir function
description 34-9

product announcement checklist 19-3



IDX-8 Index

product categories in KITS 17-3
default 21-3
FermiTools 21-3
FNAL only 21-3
proprietary 21-3
registration for special categories 17-3
U.S. only 21-3

product dependencies (See dependencies)
product dependency matching 26-2
product development 16-7

announcement policies for new products 17-10
checklist for building product 19-2
checklist for distributing to KITS 19-3
checklist for pre-build 19-1
checklist for product announcements 19-3
checklist for testing 19-2
code management system 16-6
compile script 37-1
configure script 36-1
configure third-party product 16-6
current script 36-3
declaring product during development 16-2
distributing the product 17-1
documentation location 15-7
example procedure for simple product 16-1
man page creation 16-3
overlaid products 16-7
pre-build checklist with template_product 19-1
pre-built binaries 16-5
prep for rebuilding 16-6
read-only variables 34-18
recommendations

fully-specified flavor 15-1
location determination 15-2
nonuse of /usr/local/bin 15-2
nonuse of /usr/local/products 15-3
reproducible build procedure 15-3
self-containment 15-2
shell-independence 15-1
system-independence 15-3

sample directory hierarchy 16-2
selection of build node 16-7
simple build procedure 16-1
start script 36-3
stop script 36-3
table files 35-1

sample 16-2
tailor script 36-3
testing product 16-4, 18-5
third-party products 15-3
uncurrent script 36-3
unflavored scripts 16-4
using template_product 18-1
vendor-supplied products, rebuilding 16-6

product development tools
buildmanager 15-5
CVS 15-5
template_product 15-6

product distribution
announcement policies for new products 17-10
overview 17-1
using template_product 18-1, 18-6
via CD-ROM 20-14

product distribution node (See distribution node)
product documentation 15-7

product files
configure UPD to set location 11-4, 11-5
location 11-4, 11-5
ownership 11-3
permissions 11-3

product flavor 1-3
product installation (See installing a product)
product instance (see instance)
product instance matching (See instance matching)
PRODUCT keyword 22-48

description 27-6, 28-2, 29-2
product registration for KITS 21-3
product removal (See remove a product)
product root directory 15-6

definition 1-3
locate using ups list -K 22-52
simple example of structure 16-2

product use statistics 27-9
product version 1-3
products account 11-1
products area 3-4

adding a new one 11-9
as set in UPD config 3-4
choosing location 11-4
defining during UPS bootstrap 13-2
for development⁄testing 11-9
for KITS 21-1
PROD_DIR keyword 27-6, 28-2
PROD_DIR_PREFIX keyword 27-6
structure of product root directory 15-6
unwind product tar files into 7-3

products for use only at FNAL 21-3
products for use only in U.S. 21-3
products requiring build 16-6

build script recommendations 15-3
inserting into template_product 18-4
pre-build checklist 19-1

proprietary products 21-3
on fnkits 4-8

Q

qualifiers
choosing whether to declare them 3-8
description 24-8
mixing required and optional 24-9
optional 24-9
overview 1-4
required 24-8
use in instance matching 26-4

QUALIFIERS keyword 22-48
description 27-6, 28-3, 29-2

R

reader comment solicitation INT-5
README file 7-1, 15-6, 19-1

sample 16-8
read-only variables 34-18

PRODUCTS 34-19
to be added in future 34-21
UPS_COMPILE 34-19



Index IDX-9

UPS_EXTENDED 34-19
UPS_OPTIONS 34-19
UPS_ORIGIN 34-19
UPS_OS_FLAVOR 34-19
UPS_PROD_DIR 34-19
UPS_PROD_FLAVOR 34-19
UPS_PROD_NAME 34-19
UPS_PROD_QUALIFIERS 34-19
UPS_PROD_VERSION 34-19
UPS_THIS_DB 34-19
UPS_UPS_DIR 34-20
UPS_VERBOSE 34-20

rebuilding product 16-7
registering products for KITS 21-3
RELEASE_NOTES file 19-1

sample 16-9
remove a product 10-7, 22-79

unconfiguring 10-9
using UPP 10-8, 10-10
using ups undeclare command 10-8, 22-77

remove a product component
from distrib node 17-8

remove access to product 2-10, 22-11
remove product from distrib node 17-8

using template_product 18-8
retrieve file or dir from distribution node 10-15
retrieve product from distribution node 5-1
reversible functions 33-2

definition 34-1

S

searchlog.cgi script 20-13
selecting database for dependency install using UPD 5-3
selecting database for product install using UPD 5-2
setup command 1-1, 2-8, 22-5

associated environment variables 22-5
for chained instance 2-9
for current instance 2-9
for unchained instance 2-9
reference 22-3
special options 2-9
test if setup would succeed 10-16, 22-33
use in troubleshooting problem installations 9-1, 10-17
-v option for use in troubleshooting 9-1, 10-17

setupEnv function
description 34-10

setupOptional function
description 34-10
use to define dependencies 35-4

setupRequired function
description 34-10
use to define dependencies 35-4

setups.[c]sh files 1-9
courtesy links to 12-3
determine directory for 11-6
pointers to 11-6

SETUPS_DIR keyword 22-48, 30-2
description 27-6

sh
parse ups list output in a scipt 22-53

shell script products
inserting into template_product 18-4
pre-build checklist 19-1

simulate command 9-1, 10-17
source code

revision tracking 17-9
storage in CVS 17-9, 18-8

sourceCompileOpt function
description 34-11

sourceCompileReq function
description 34-11

sourceOptCheck function
description 34-12

sourceOptional function
description 34-13

sourceReqCheck function
description 34-13

sourceRequired function
description 34-14

src directory 15-7
stage1.sh file 13-1, 13-5
stage2.sh file 13-5
stanzas

table file 35-1
UPD config file 31-1
UPP subscription file 6-1, 32-2

START action 36-3
start script 14-3, 36-3
statistics

how to gather 11-10, 27-9
output 27-10

STATISTICS keyword 22-48, 30-2
as set by -L option 24-3
description 27-6, 28-3
detailed description of use 27-9
output from 27-10

STOP action 36-3
stop script 14-3, 36-3
subscription file for UPP

creating 6-1
reference 32-1
sample for product installation 6-3

SUFFIX keyword 20-9, 20-10
syntax of UPS/UPD commands 1-8, 25-1

T

table files 1-6
compile script used with 37-1
detailed description 35-1
examples

action present for some instances only 35-8
execute one action or another 35-8
grouping 35-6
use of FLAVOR=ANY 35-6
with user-defined keywords 35-7

grouping information in 35-3
information storage format 27-2
instance matching within 26-3
keywords 27-2
locate using ups list -K 22-52
location specification 28-5
naming 35-1



IDX-10 Index

ordering elements in 35-3
overwrite 10-14
read-only variables available for use in 34-18
recommendations to developers 35-2
sample for simple product 16-2, 16-4
stanzas 35-1
structure and contents 35-2
test if needs update 10-13
undoing reversible functions 33-2
-V option for debugging 24-9

TABLE_DIR keyword 22-48
description 27-6, 28-3

TABLE_FILE keyword 22-48, 27-10
description 27-6, 28-3

tailor a product instance 3-9, 22-69
TAILOR action 3-9, 22-67, 22-69, 36-3
tailor script 36-3
tar file creation

by upd addproduct 17-1, 23-7
using template_product 18-5

template_product 15-6, 17-2
adding build instructions 18-4

to top-level Makefile 18-4
checklist for building product 19-2
checklist for distributing to KITS 19-3
checklist for pre-build 19-1
cloning 18-2
customizing product tar file 18-5
downloading 18-2
editing top-level Makefile 18-3
inserting pre-built binaries 18-4
inserting product requiring build 18-4
inserting shell scripts 18-4
inserting your product 18-4
Makefile (top-level) 18-3
overview 18-1
removing product from distrib node 18-8
running a build procedure 18-4

temporary script
prevent deletion 24-9

test chain 1-4
test directory 15-7
testing products 18-5

checklist 19-2
third-party products 15-3
toInfo directory 15-6
toman directory 15-6

U

umask 3-7
unAlias function

description 34-14
unchain

as action in table files 33-3
replace chain on distrib node using upd modproduct

17-7
use ups undeclare to remove chain 10-6, 22-77

UNCONFIGURE action 10-9, 22-75, 36-1
unconfigure script 36-1
UNCURRENT action 36-3
uncurrent script 36-3
undeclare a chain 10-6, 22-77

undeclare a product instance 10-7, 22-79
using UPP 10-8
using ups undeclare command 10-8

undoing chains in table files 33-3
unflavored scripts 16-4
UNIX Product Distribution

overview 1-1
UNIX Product Poll 32-1

overview 1-1
UNIX Product Support

overview 1-1
unknown command handler

description 33-3
unProdDir function

description 34-14
unsetup command 2-10, 22-11

$SETUP_UPS variable 1-10
behavior with dependencies 22-11
reference 22-9
use of $SETUP_<PRODUCT> variable 22-6, 22-11

unsetupEnv function
description 34-15

unsetupOptional function
description 34-15

unsetupRequired function
description 34-16

UNWIND_ARCHIVE_FILE keyword 20-9, 20-10
description 27-6
use in updconfig 31-4

UNWIND_PROD_DIR keyword 3-4
description 27-7
use in updconfig 31-3

UNWIND_TABLE_DIR keyword
description 27-7
use in updconfig 31-4

UNWIND_UPS_DIR keyword
description 27-7
use in updconfig 31-3

UPD
command syntax 1-8
configuration file

info for installers 3-3
overriding default 3-4
reference 31-1

overview 1-1
procedural checklist for installation 5-3

upd addproduct command
adding table file product 17-5
adding typical product 17-3
chains 17-3, 23-7
detailed functions 20-2
internal processes 23-8
reference 23-3
response of distrib node 20-2
tar file creation 17-1, 23-7

upd cloneproduct command
reference 23-11

UPD commands
defaults 1-8
dependency matching 26-2
instance matching 26-1
interaction with distrib node 20-1
option flag grouping 25-2
option usage 25-4
order of command line elements 25-1



Index IDX-11

specifiying version/chain 25-1
specifying multiple products 25-3

UPD configuration file 27-3
AFS issues 8-2
distrib node 20-9

KITS database pre and postdeclare actions 21-4
pre and postdeclare actions 20-10

examples 31-7
AFS 31-10
distrib node config 31-10
distribution from fnkits 31-8
mulitple dbs and distrib nodes 31-9

for KITS database 21-2
info for installers 3-3
organization 31-1
overriding default 3-4, 31-1
overview 27-1
pre and postdeclare actions 31-5
product matching 31-2
reference 31-1
required location definitions 31-3
sample location definitions 31-5
setting file permissions 11-3
stanzas 31-1

upd delproduct command 17-8
reference 23-13

upd depend command 4-5
reference 23-15

upd exist command 10-16
reference 23-17

upd fetch command 10-15
reference 23-19

upd get command
reference 23-23

upd install command 5-1
database selection 5-2
database selection for dependencies 5-3
detailed functions 20-2
-G (pass options to local declare) 5-2, 23-28
internal processes 23-29
procedural checklist for installation 5-3
reference 23-25
response of distrib node 20-2
summary of functions it performs 3-1
syntax and commonly used options 5-1, 23-25
use to determine if product update needed 10-13

upd list command 4-1
reference 23-31

upd modproduct command 17-6, 17-7
reference 23-33
response of distrib node 20-2

upd move_archive_file script 20-2
upd moved_ups_dir script 20-2
_UPD_OVERLAY keyword 16-7, 27-11

description 27-8
upd repproduct command

reference 23-39
upd update command 10-13, 10-14

reference 23-41
upd verify command

reference 23-45
upd.cgi script 20-2, 20-11

access restrictions 20-6
description 20-5

UPD_USERCODE_DB keyword 22-48
description 27-7

UPD_USERCODE_DIR keyword 3-4, 22-48, 30-2
description 27-7
on fnkits 21-2

update product
determine if update needed 10-13
using UPD 10-13
using UPP 10-13

updconfig file (see UPD configuration file)
updconfig.template file 31-1, 31-7
updusr.pm file 31-1
upgrading UPS installation 11-8
UPP

automate upp command via cron 6-4
command syntax 6-4
monitor products on distribution node 4-3
notification of update needed 4-3, 10-13
overview 1-1
remove a product 10-8, 10-10
subscription file

creating 6-1
definition 4-3
sample for product installation 6-3

uses 32-1
upp command 4-3, 6-1

automation via cron 6-4
reference 23-47
syntax 4-4, 6-4

UPP subscription file
adding instructions 32-2
available functions 32-3
creating 6-1
definition 4-3
header description 32-1
instance matching 32-2
reference 32-1
sample 32-3
sample for product installation 6-3
stanza description 32-2

UPS
aliases defined 1-10
benefits of methodology 1-2
chains 1-4
command syntax and defaults 1-8
database 1-1
database directory specification 1-10
motivation for methodology 1-2
multiple database support 1-1
multiple product flavor support 1-3
multiple product version support 1-2, 1-3
overview 1-1
pointer to product root directory ($UPS_DIR) 1-10
product instance 1-4
product version 1-3
products distributed and managed by 1-3
upgrading your UPS installation 11-8
use without a database 1-7, 11-7

UPS commands
"-?" for usage information 2-1
"uncommands" as action keyword values 34-1
as ACTION keyword 33-1
database selection 26-1
defaults 1-8
dependency matching 26-2



IDX-12 Index

instance matching 26-1
keeping statistics on 11-10, 27-9
option flag grouping 25-2
option usage 25-4
order of command line elements 25-1
specifying multiple products 25-3
specifying version/chain 25-1

UPS configuration file 27-3
defining directory locations in 11-6
for KITS database 21-1
for local database on fnkits 21-1
keywords used in 30-1
overview 27-1
reference 30-1
sample 30-2

ups configure command 3-9
reference 22-13

ups copy command 22-19
reference 22-17

UPS database
$PRODUCTS variable 1-10
$UPS_EXTRA_DIR variable for AFS 12-5
.updfiles subdirectory 1-6
.upsfiles subdirectory 1-6
checklist for creating a database 11-9
choosing single or multiple 11-6
configuring local to work with AFS 12-2
create a private database 11-9
create local database to work with AFS 12-2
declare a product instance to 3-5, 10-1
declaring products into local (not AFS) 12-4
definition 1-6
for development/testing 11-9
installing products into local (not AFS) 12-5
list all current products in 2-4
list product information 2-2
listed in upsdb_list file 12-2
multiple (See multiple databases)
NFS mounted 12-1
permissions for files (distrib node) 20-7
providing access to multiple databases 12-2
setting up your own 5-3

with AFS 12-2
standard naming conventions for use with AFS 12-2
structure and contents 1-6
using AFS and local 5-3
using UPS without a database 1-7, 11-7

UPS database files 1-6
chain files 1-6, 29-1
check for inconsistencies 10-10
editing 10-11
keywords 27-1
overview 27-1
UPD configuration file 31-1
UPS configuration file 30-1
version files 1-6, 28-1

ups declare command 3-6, 10-3
as used internally by upd install 5-2
reference 22-21
specifying database 3-5, 10-2
specifying table file path 3-5, 10-2
specifying ups directory 3-5, 10-2
syntax and common options

for declaring chain 10-4
for declaring instance 3-5, 7-4, 10-2

use during development 16-2
use to declare chain 10-4
use to declare instance 3-5, 10-1

ups depend command 2-7, 10-8, 22-79
reference 22-27

ups directory 3-5, 7-1, 10-2, 15-6, 27-11
description 15-6
locate using ups list -K 22-52
overwrite 10-14
test if needs update 10-13

UPS environment (See environment)
ups exist command 10-16, 22-33

reference 22-31
ups flavor command 2-1

-H option (specifies other flavor) 22-36
-l option (returns flavor table) 22-36
number options (specify OS level) 2-2
obtain flavor levels 2-2
obtain flavor table 2-2
reference 22-35

ups get command
reference 22-39

ups help command
reference 22-41

UPS initialization file 11-6
ups installasroot command 12-6
ups list command 2-2, 3-6, 10-3, 10-5

condensed output 2-3, 22-46
default output fields 22-45
for db managers and product installers 27-1
formatted output 2-3, 22-45
-K option

for script-readable format 2-3, 22-46
keyword arguments 22-46
use to locate product files 22-52

keywords for -K option 2-3
list all current products 2-4
list all output fields 2-6
long listing 22-51
parse output

in perl 22-52
in sh script 22-53

reference 22-43
ups modify command

editing database files 10-11
reference 22-55

UPS product overlay (See overlays)
UPS product requirements (See dependencies)
UPS products

accessibility 10-16
announcement policies 17-10
bin directory 15-6
build and distribute using template_product 18-1
catman directory 15-7
compilation options 1-4
definition 1-3
directory structure 15-6
distribution restrictions 20-11
distribution via CD-ROM 20-14
doc directory 15-7
documentation storage 15-7
examples directory 15-7
files and directories to include 19-1
hardcoded locations 15-3
html directory 15-7



Index IDX-13

include directory 15-7
Info directory 15-7
INSTALL_NOTE file 15-6
installation methods, summary 3-1
installed with different name than on server 3-8
interruption during installation 3-8
lib directory 15-7
list on distribution node 4-1
man directory 15-7
news directory 15-7
overlays 16-7
permissions set at installation 3-7
proprietary products

on fnkits 4-8
qualifiers 1-4
README file 15-6
special categories, flagging 20-12
src directory 15-7
support levels 17-10
test directory 15-7
third-party 15-3
toInfo directory 15-6
toman directory 15-6
ups directory 7-1, 15-6, 27-11

ups script 14-1
ups setup command (for troubleshooting) 9-1, 10-17
ups start command 14-2, 14-5

reference 22-59
usage in autostart 14-3

ups stop command 14-2
reference 22-63
usage in autostart 14-4

ups tailor command 3-9, 22-69
reference 22-67

ups touch command
reference 22-71

ups unconfigure command 10-7, 10-9, 22-79
reference 22-73

ups undeclare command
reference 22-77
remove chain 10-6, 22-77
remove product instance 10-7, 10-8, 22-79
syntax and common options

for chain removal 10-6
for product removal 10-8

-y and -Y options to remove root directory 10-8
ups verify command 10-10

reference 22-81
run by ups modify 10-11
use in troubleshooting problem installations 9-1, 10-17

ups.cgi script 20-2
description 20-5

UPS/UPD/UPP installation components 1-1
UPS_ARCHIVE_FILE keyword 20-9, 20-10

description 27-7
UPS_ARCHIVE_FILES keyword

use in updconfig 31-4
UPS_DB_VERSION keyword 30-2

description 27-7, 28-3, 29-2
UPS_DIR keyword 22-48, 27-11

as set by -U option 24-5
description 27-7, 28-3

UPS_EXTENDED variable 24-7

UPS_PROD_DIR keyword 3-4
description 27-7
use in updconfig 31-3

ups_shutdown script 14-1, 14-2, 14-5
ups_startup script 14-1, 14-2, 14-5
UPS_TABLE_DIR keyword

description 27-7
use in updconfig 31-3

UPS_TABLE_FILE keyword
description 27-8
use in updconfig 31-4

UPS_THIS_DB keyword
description 27-7
use in updconfig 31-3

UPS_UPS_DIR keyword
description 27-8
use in updconfig 31-3

upsdb_list file 12-2
for AFS 12-5

upsdb_list variable 13-3
ups-decl.cgi script 20-2, 20-11

access restrictions 20-6
description 20-5

user comment solicitation INT-5
USER keyword

description 27-8
user-defined chains 1-4
user-defined commands 33-3
user-defined keywords 27-2
US-only products 21-3

V

variables (read-only) defined within UPS 34-18
vendor-supplied products

rebuilding 16-6
verbose command output (-v) 9-1, 10-17
version files 1-6, 22-79

and product removal 10-7
creating 28-1
description 28-1
examples 28-3
information included in 28-1
information storage format 28-1
instance matching within 26-3
location 28-1
overview 27-1
table location specification in 28-5

VERSION keyword 22-48
description 27-8, 28-3, 29-2

version of product 1-3
version specification in commands 25-1

W

web server
access file 20-11
log file on fnkits 21-7
on distrib node 20-1
prerequisites for cgi scripts 20-7



IDX-14 Index

writeCompileScript function
description 34-16

www
download products from 16-5


